Week 1: Preliminaries and Sobolev spaces

References

Outline

We wish to better understand second-order elliptic boundary-value problems:

Lu:=i,j=1naij2uxixj+i=1nbiuxi+cu=f in ΩuΩ given,(#)\begin{aligned} Lu:=\sum_{i,j=1}^{n}a^{ij}\frac{\partial^{2}u}{\partial x^{i}\partial x^{j}} + \sum_{i=1}^{n}b^{i}\frac{\partial u}{\partial x^{i}} + c\cdot u &= f\ \textup{in}\ \Omega\\ \left.u\right|_{\partial\Omega}&\ \textup{given}, \end{aligned} \tag{\#}

where aija^{ij}, bib^{i}, cc and uΩ\left.u\right|_{\partial\Omega} are sufficiently 'nice' functions and (aij)i,j=1n(a^{ij})_{i,j=1}^{n} is a positive-definite matrix.

...as well as their heat equation counterpart:

tu(,t)=Lu(,t) in Ω for t[0,T]uΩ×{0},uΩ×[0,T] given.\begin{aligned} \partial_{t}u(\cdot,t)&=Lu(\cdot,t)\ \textup{in}\ \Omega\ \textup{for}\ t\in[0,T]\\ \left.u\right|_{\Omega\times\{0\}}&,\left.u\right|_{\partial\Omega\times[0,T]}\ \textup{given}. \end{aligned}

Aspects of such problems that we wish to consider are:

Notation

Analysis

Ω will always be a nonempty open set in Rn!

Multiïndex notation

A multiïndex is an nn-tuple α=(α1,,αn)Zn\alpha=(\alpha_{1},\dots,\alpha_{n})\in\mathbb{Z}^{n}, αi0\alpha_{i}\geq 0. Addition is defined in the usual way. We set:

We also introduce a partial ordering on multiïndices such that αβ\alpha\leq\beta iff for all i{1,,n}i\in\{1,\dots,n\}, αiβi\alpha_{i}\leq \beta_{i}.

Using multiïndices α\alpha with αk|\alpha|\leq k, we may abbreviate derivatives of CkC^{k} functions uu as

Dαu:=αu(x1)α1(xn)αn=1α1nαnu.\D^{\alpha}u:=\frac{\partial^{|\alpha|}u}{(\partial x^{1})^{\alpha_{1}}\dots(\partial x^{n})^{\alpha_{n}}}=\partial^{\alpha_{1}}_{1}\dots \partial_{n}^{\alpha_{n}}u.

\rightsquigarrow Integration by parts: If φ\varphi vanishes close to Ω\partial\Omega, then

ΩDαfφ=(1)αΩfDαφ.\int_{\Omega}\D^{\alpha}f\cdot \varphi = (-1)^{|\alpha|}\int_{\Omega}f\cdot \D^{\alpha}\varphi.

\rightsquigarrow Taylor's theorem: Whenever Ω\Omega is open and connected, x,x0Ωx,x_{0}\in \Omega and fCk(Ω)f\in C^{k}(\Omega),

f(x)=αkDαf(x0)α!(xx0)α+O(xx0k) as xx0.f(x)=\sum_{|\alpha|\leq k}\frac{\D^{\alpha}f(x_{0})}{\alpha!}\cdot (x-x_{0})^{\alpha} + O(|x-x_{0}|^{k})\ \textup{as}\ x\rightarrow x_{0}.

Preliminaries

Inequalities

The following inequalities will be used and abused:

(i=1nxi+yip)1/p(i=1nxip)1/p+(i=1nyip)1/p.\left(\sum_{i=1}^{n}|x^{i}+y^{i}|^{p} \right)^{1/p}\leq \left(\sum_{i=1}^{n}|x^{i}|^{p}\right)^{1/p} + \left(\sum_{i=1}^{n}|y^{i}|^{p}\right)^{1/p}.

Integral convergence theorems

We will often interchange limits and integrals. To this end, we recall the following:

Topological vector spaces

We will study and make heavy use of spaces of functions equipped with different notions of convergence.

Basic notions.

Let XX be a (real or complex) vector space.

Examples

  1. Continuous and differentiable functions. For kNk\in \mathbb{N}, we define the sets

    C0(Ω):={u:ΩK continuous}Ck(Ω):={u:ΩK: αk  Dαu exists and is in C0(Ω)}\begin{aligned} C^{0}(\Omega)&:=\{u:\Omega\rightarrow\mathbb{K}\ \textup{continuous}\}\\ C^{k}(\Omega)&:=\{u:\Omega\rightarrow\mathbb{K}:\ \forall|\alpha|\leq k\ \ \D^{\alpha}u\ \textup{exists and is in}\ C^{0}(\Omega)\}\end{aligned}

    as well as

    C0(Ω):={u:ΩK continuous}Ck(Ω):={u:ΩK:αk Dαu exists, is in C0(Ω) and is continuously extensible to Ω}.\begin{aligned} C^{0}(\overline{\Omega})&:=\{u:\overline{\Omega}\rightarrow\mathbb{K}\ \textup{continuous}\}\\ C^{k}(\overline\Omega)&:=\{u:\overline\Omega\rightarrow\mathbb{K}:\forall|\alpha|\leq k\ \D^{\alpha}u\ \textup{exists, is in }C^{0}(\Omega)\ \textup{and is continuously extensible to}\ \overline\Omega\}.\end{aligned}

    For i{0,,k}i\in\{0,\dots,k\} and a family of {KjΩ}j=0\{K_{j}\Subset\Omega\}_{j=0}^{\infty} with j=0Kj=Ω\bigcup_{j=0}^{\infty}K_{j}=\Omega, introduce the seminorm

    ui,j:=supα=isupKjDαu.|u|_{i,j}:=\sup_{|\alpha|=i}\sup_{K_{j}}|\D^{\alpha}u|.

    Properties:

  2. Smooth functions: We similarly set C(Ω):=k=0Ck(Ω)C^{\infty}(\Omega):=\bigcap_{k=0}^{\infty}C^{k}(\Omega) and C(Ω):=k=0Ck(Ω)C^{\infty}(\overline{\Omega}):=\bigcap_{k=0}^{\infty}C^{k}(\overline\Omega). Both of these sets are Fréchet spaces when equipped with the family of semi-norms {i,j}i,jN{0}\{|\cdot|_{i,j}\}_{i,j\in\mathbb{N}\cup\{0\}} and {i,Ω}iN{0}\{|\cdot|_{i,\Omega}\}_{i\in\mathbb{N}\cup\{0\}} respectively.

    A distinguished subset of both of these spaces is the space of compactly supported test functions C0(Ω)C_{0}^{\infty}(\Omega):

    C0(Ω):={uC(Ω):supp uΩ}C_{0}^{\infty}(\Omega):=\{u\in C^{\infty}(\Omega):\supp u\Subset \Omega\}

    ⟦Recall that the support of a function u:ΩKu:\Omega\rightarrow\mathbb{K} is given by supp u={xΩ:u(x)0}\supp u=\overline{\{x\in\Omega:u(x)\neq 0\}}.⟧

    This set may be given a natural topology with the following notion of convergence:

  3. Lebesgue spaces: For each p[1,]p\in[1,\infty] and measurable function u:ΩKu:\Omega\rightarrow \mathbb{K}, set

    up:={(Ωup)1/p,p<ess supΩu,p=||u||_{p}:=\begin{cases}\displaystyle\left(\int_{\Omega}|u|^{p}\right)^{1/p},&p<\infty\\ \esssup_{\Omega} |u|,&p=\infty \end{cases}

    where ess supΩf:=inf{KR:fK a.e.}\esssup_{\Omega} f:=\inf\{K\in\mathbb{R}:f\leq K\ \textup{a.e.}\} for a real-valued function ff.

    We now define the Lebesgue spaces Lp(Ω)L^{p}(\Omega) (or Lp(Ω,K)L^{p}(\Omega,\mathbb{K})) as

    Lp(Ω):={f measurable:fp<}/,L^{p}(\Omega):=\{f\ \textup{measurable}: ||f||_{p}<\infty\}/\sim,

    where fgf=gf\sim g\Leftrightarrow f=g almost everywhere (a.e.). We will generally omit mention of equivalence classes and refer to the functions in question directly.

    Properties:

    For later purposes, we define the auxiliary spaces

    Llocp(Ω):={u:ΩK measurable:KΩ  uLp(K)}.\lloc^{p}(\Omega):=\{u:\Omega\rightarrow \mathbb{K}\ \textup{measurable}:\forall K\Subset\Omega\ \ u\in L^{p}(K)\}.

    By Hölder's inequality, we have that Llocp(Ω)Llocq(Ω)\lloc^{p}(\Omega)\subset \lloc^{q}(\Omega) whenever q<pq<p. We say that a sequence converges in Llocp(Ω)\lloc^{p}(\Omega) if its restriction to KK converges in Llocp(K)\lloc^{p}(K) for every KΩK\Subset\Omega.

  4. Hölder spaces: We call a function f:ΩKf:\Omega\rightarrow\mathbb{K} Hölder continuous with exponent γ]0,1]\gamma\in\left]0,1\right] if there is a constant C0C\geq 0 s.t. for all x,yΩx,y\in\Omega,

    f(x)f(y)Cxyγ.|f(x)-f(y)|\leq C|x-y|^{\gamma}.

    ⟦Note that the case γ=1\gamma=1 corresponds to Lipschitz functions.⟧

    We introduce the γ\gammath Hölder seminorm

    [f]γ:=sup{f(x)f(y)xyγ:x,yΩ, xy}[f]_{\gamma}:=\sup\left\{\frac{|f(x)-f(y)|}{|x-y|^{\gamma}}: x,y\in\Omega,\ x\neq y \right\}

    as well as the k+γk+\gammath Hölder norm

    fk+γ:=αkDαfk,Ω+α=k[Dαu]γ.||f||_{k+\gamma}:=\sum_{|\alpha|\leq k}||\D^{\alpha}f||_{k,\Omega}+\sum_{|\alpha|=k}[\D^{\alpha}u]_{\gamma}.

    The Hölder spaces are then given by

    Ck+γ(Ω):={fCk(Ω):fk+γ<}.C^{k+\gamma}(\overline\Omega):=\{f\in C^{k}(\overline\Omega):||f||_{k+\gamma}<\infty\}.

    Exercise. (Ck+γ(Ω),k+γ)(C^{k+\gamma}(\overline{\Omega}),||\cdot||_{k+\gamma}) is a Banach space.

Approximation by smooth functions

Let ρC0(Rn)\rho\in \cs(\mathbb{R}^{n}) be such that supp ρB(0,1)\supp\rho\subset \overline{B(0,1)}, ρ0\rho\geq 0 and Rnρ=1\int_{\mathbb{R}^{n}}\rho=1; for example,

ρ(x):={ce1/(x21), x<10, otherwise\rho(x):=\begin{cases}c\cdot e^{-1/(|x|^{2}-1)},&\ |x|<1\\ 0,&\ \textup{otherwise}\end{cases}

for a suitable constant c>0c>0.

Given uLloc1(Ω)u\in \lloc^{1}(\Omega), extend uu to all of Rn\mathbb{R}^{n} s.t. uRn\Ω0\left.u\right|_{\mathbb{R}^{n}\backslash\Omega}\equiv 0 and for each ε>0\eps>0 define the mollifier of uu to be the function

Jεu:RnRJεu(x):=εnRnρ(xzε)u(z)dz=B(0,1)ρ(z)u(xεz)dz.\begin{aligned} J_{\eps}u&:\mathbb{R}^{n}\rightarrow \mathbb{R}\\ J_{\eps}u(x)&:=\eps^{-n}\int_{\mathbb{R}^{n}}\rho(\frac{x-z}{\eps})\cdot u(z)dz=\int_{B(0,1)}\rho(z)u(x-\eps z)dz. \end{aligned}

Theorem 1.1. JεuC(Rn)J_{\eps}u\in C^{\infty}(\mathbb{R}^{n}) and the following hold:

  1. If supp uΩ\supp u \Subset\Omega, then for ε<dist(supp u,Ω)\eps<\dist(\supp u,\partial\Omega), JεuC0(Ω)J_{\eps}u\in \cs(\Omega).

  2. For any uLp(Ω)u\in L^{p}(\Omega), p[1,]p\in[1,\infty], Jεupup||J_{\eps}u||_{p}\leq ||u||_{p}.

  3. If uC0(Ω)u\in C^{0}(\Omega), then Jεuε0uJ_{\eps}u\xrightarrow{\eps\searrow 0}u locally uniformly, i.e. for each KΩK\Subset\Omega,

    limε0supKJεuu=0.\lim_{\eps\searrow 0}\sup_{K}|J_{\eps}u - u|=0.
  4. If p[1,[p\in[1,\infty[, then Jεuupε00||J_{\eps}u-u||_{p}\xrightarrow{\eps\searrow 0}0.

  5. If p[1,]p\in[1,\infty], then limε0Jεu=u\displaystyle\lim_{\eps\searrow 0}J_{\eps}u=u almost everywhere.

Proof. Note that xρ(xzε)x\mapsto \rho(\frac{x-z}{\eps}) and all of its derivatives are bounded functions of zz supported in B(x,ε)\overline{B(x,\eps)}, whence smoothness follows from the dominated convergence theorem. We tackle the other claims:

  1. Let xRnx\in\mathbb{R}^{n} be such that dist(x,supp u)>ε\dist(x,\supp u)>\eps and zB(0,1)z\in B(0,1). The (reverse) triangle inequality implies that dist(xεz,supp u)>dist(x,supp u)ε>0\dist(x-\eps z,\supp u)>\dist(x,\supp u)-\eps>0 so that

    Jεu(x)=B(0,1)ρ(z)u(xεz)dz=0,J_{\eps}u(x)=\int_{B(0,1)}\rho(z)u(x-\eps z)dz=0,

    whence supp JεuBε(supp u)\supp J_{\eps}u\subset \overline{B_{\eps}(\supp u)}. This establishes the claim for small ε\eps.

  2. We estimate, using Hölder's inequality using the conjugate pair (pp1,p)(\frac{p}{p-1},p):

    Jεu(x)=B(0,1)ρ(z)p1p(ρ(z)u(xεz)p)1/pdz(B(0,1)ρ)p1p=1(B(0,1)ρ(z)u(xεz)pdz)1/p\begin{aligned}|J_{\eps}u(x)|&= \left|\int_{B(0,1)}\rho(z)^{\frac{p-1}{p}}\cdot (\rho(z)u(x-\eps z)^{p})^{1/p} dz\right|\\ &\leq\underbrace{(\int_{B(0,1)}\rho)^{\frac{p-1}{p}}}_{=1}\cdot \left(\int_{B(0,1)}\rho(z)\cdot |u(x-\eps z)|^{p}d z\right)^{1/p} \end{aligned}

    Therefore, we see that

    RnJεupRnB(0,1)ρ(z)u(xεz)pdz dx=B(0,1)ρ(z)Rnu(xεz)pdx dz=upp.\int_{\mathbb{R}^{n}}|J_{\eps}u|^{p} \leq \int_{\mathbb{R}^{n}}\int_{B(0,1)}\rho(z)\cdot |u(x-\eps z)|^{p}dz\ dx=\int_{B(0,1)}\rho(z)\cdot \int_{\mathbb{R}^{n}}|u(x-\eps z)|^{p}dx\ dz=||u||_{p}^{p}.

    The case p=p=\infty follows immediately from the definition of JεuJ_{\eps}u.

  3. We compute that for xKx\in K, Jεu(x)u(x)=B(0,1)ρ(z)[u(xεz)u(x)]dzsupyB(x,ε)u(y)u(x)|J_{\eps}u(x) - u(x)|=|\int_{B(0,1)}\rho(z)\cdot [u(x-\eps z) - u(x)]dz|\leq \sup_{y\in B(x,\eps)}|u(y)-u(x)|, i.e.

    supKJεuusupxKsupyB(x,ε)u(y)u(x)ε00.\sup_{K}|J_{\eps}u-u|\leq\sup_{x\in K}\sup_{y\in B(x,\eps)}|u(y)-u(x)|\xrightarrow{\eps\searrow 0}0.
  4. Let uLp(Ω)u\in L^{p}(\Omega) and fix δ>0\delta>0. By the density of C0(Ω)C^{0}(\Omega) in Lp(Ω)L^{p}(\Omega), we may find a vC0(Ω)v\in C^{0}(\Omega) with compact support in Ω\Omega such that uv<δ3||u-v||<\frac{\delta}{3}. Therefore, by the triangle inequality,

    JεuupJεuJεvpuvp+Jεvvp+vup<2δ3+Jεvvp.||J_{\eps}u - u||_{p} \leq \underbrace{||J_{\eps}u - J_{\eps}v||_{p}}_{\leq ||u-v||_{p}} + ||J_{\eps}v - v||_{p} + ||v-u||_{p}<\frac{2\delta}{3} + ||J_{\eps}v-v||_{p}.

    By the preceding part, we may choose ε>0\eps>0 sufficiently small so that Jεvvp<δ3||J_{\eps}v-v||_{p}<\frac{\delta}{3}.

  5. Note that Jεu(x)u(x)=εnΩρ(xzε)(u(z)u(x))dzsupρεnB(x,ε)u(z)u(x)dzε00|J_{\eps}u(x) - u(x)| = |\eps^{-n}\int_{\Omega}\rho(\frac{x-z}{\eps})\cdot (u(z)-u(x) )dz|\leq \sup\rho\cdot \eps^{-n}\int_{B(x,\eps)}|u(z)-u(x)|dz\xrightarrow{\eps\searrow 0}0 by the Lebesgue differentiation theorem.

Using mollifiers, we may prove the following density result.

Lemma 1.2. C0(Ω)\cs(\Omega) is dense in Lp(Ω)L^{p}(\Omega), i.e. for any uLp(Ω)u\in L^{p}(\Omega) and ε>0\eps>0, there exists a vC0(Ω)v\in \cs(\Omega) such that uvp<ε||u-v||_{p}<\eps.

Proof. First assume Ω\Omega is bounded. For any δ>0\delta>0, let U={xΩ:dist(x,Ω)>δ}U=\{x\in \Omega: \dist(x,\partial\Omega)>\delta\} and set v:=uχUv:=u\cdot \chi_{U}, where χU\chi_{U} is the characteristic function of UU. Since

uvp=(Ω\Uup)1/p||u-v||_{p}=\left(\int_{\Omega\backslash U}|u|^{p} \right)^{1/p}

and μ(Ω\U)0\mu(\Omega\backslash U)\searrow 0 as δ0\delta\searrow 0, we may choose δ\delta small enough so that uvp<ε3||u-v||_{p}<\frac{\eps}{3}, and supp vUΩ\supp v\subset\overline{U}\Subset\Omega. On the other hand, by the preceding theorem, Jzvvpz00||J_{z}v-v||_{p}\xrightarrow{z\searrow 0}0 and JzvC0(Ω)J_{z}v\in\cs(\Omega) z<δz<\delta. Therefore, for sufficiently small zz, Jzvvp<ε3||J_{z}v-v||_{p}<\frac{\eps}{3}. The triangle inequality now implies uJzv<2ε3||u-J_{z}v||<\frac{2\eps}{3}.

Now suppose Ω\Omega is unbounded. Since Ωup=limrΩB(0,r)up\int_{\Omega}|u|^{p} = \lim_{r\rightarrow\infty}\int_{\Omega\cap B(0,r)}|u|^{p}, we may choose r>0r>0 large enough so that uuχΩB(0,r)p<ε3||u- u\cdot \chi_{\Omega\cap B(0,r)}||_{p}<\frac{\eps}{3}. We may now treat uχΩB(0,r)u\cdot\chi_{\Omega\cap B(0,r)} according to the preceding case.

Sobolev spaces

We now turn our attention to LpL^{p} functions that admit derivatives in a weaker sense.

Weakly differentiable functions

Definition. Let uLloc1(Ω)u\in \lloc^{1}(\Omega). We say that Dαu\D^{\alpha}u exists in the weak sense if there exists a vLloc1(Ω)v\in\lloc^{1}(\Omega) such that for all φC0(Ω)\varphi\in C_{0}^{\infty}(\Omega),

ΩuDαφ=(1)αΩvφ(*)\int_{\Omega}u\cdot \D^{\alpha}\varphi = (-1)^{|\alpha|}\int_{\Omega}v\cdot \varphi\tag{*}

and write Dαu:=v\D^{\alpha}u:=v. If for each αk|\alpha|\leq k, Dαu\D^{\alpha}u exists in the weak sense, we say that uu is kk-times weakly differentiable.

Remark. When Dαu\D^{\alpha}u exists, it is uniquely determined by (*) almost everywhere.

Notation. Whenever uu is kk-times weakly differentiable, we adopt the usual partial derivative notation, i.e. iu:=Deiu\partial_{i}u:=\D^{e_{i}}u and Dαu=1α1nαnu\D^{\alpha}u=\partial_{1}^{\alpha_{1}}\dots\partial_{n}^{\alpha_{n}}u. Note that there is no ambiguity in the order of differentiation!

Exercise. Show that weak differentiation is K\mathbb{K}-linear, i.e. given λK\lambda\in \mathbb{K} and u,vLloc1(Ω)u,v\in \lloc^{1}(\Omega) such that both Dαu\D^{\alpha}u and Dαv\D^{\alpha}v exist in the weak sense, we have that Dα(λu)=λDαu\D^{\alpha}(\lambda u)= \lambda\cdot\D^{\alpha}u and Dα(u+v)=Dαu+Dαv\D^{\alpha}(u+v)=\D^{\alpha}u + \D^{\alpha}v.

Exercise. If uLloc1(Ω)u\in \lloc^{1}(\Omega) is such that DαuLloc1(Ω)\D^{\alpha}u\in \lloc^{1}(\Omega) exists weakly and if Dβ(Dαu)Lloc1(Ω)\D^{\beta}(\D^{\alpha}u)\in\lloc^{1}(\Omega) exists weakly, then Dα+βu\D^{\alpha+\beta}u exists and Dα+βu=Dβ(Dαu)\D^{\alpha+\beta}u=\D^{\beta}(\D^{\alpha}u).

Exercise. If uLloc1(Ω)u\in \lloc^{1}(\Omega) is kk-times weakly differentiable and vCk(Ω)v\in C^{k}(\Omega), then for all β\beta with β[0,m]|\beta|\in[0,m],

Dβ(uv)=αβ(βα)DαuDβαu.\D^{\beta}(uv) = \sum_{\alpha\leq \beta}\left(\begin{matrix}\beta\\\alpha \end{matrix} \right)\D^{\alpha}u\cdot \D^{\beta-\alpha}u.

Examples

  1. If uCk(Ω)u\in C^{k}(\Omega), then (*) is just integration by parts formula \Rightarrow uu is kk-times weakly differentiable.

  2. Consider the function f:]0,2[Rf:\left]0,2\right[\rightarrow\mathbb{R} defined by

    f(x)={x,0<x11,1x<2.f(x)=\begin{cases}x,& 0<x\leq 1\\ 1,&1\leq x < 2 \end{cases}.

    We claim that ff is weakly differentiable with weak derivative g:]0,2[Rg:\left]0,2\right[\rightarrow\mathbb{R} given by

    g(x)={1,0<x10,1x<2.g(x)=\begin{cases}1,& 0<x\leq 1\\ 0,&1\leq x < 2 \end{cases}.

    We need to show that for any φC0(]0,2[)\varphi\in C_{0}^{\infty}(\left]0,2\right[),

    02fφ=02gφ.(!)\int_{0}^{2}f\cdot \varphi' = -\int_{0}^{2}g\cdot \varphi.\tag{!}

    We compute:

    02fφ=01xφ(x)dxIBP+12φ=01φ=02gφ.\int_{0}^{2}f\cdot \varphi' = \underbrace{\int_{0}^{1}x\cdot \varphi'(x)dx}_{\textup{IBP}} + \int_{1}^{2}\varphi'=-\int_{0}^{1}\varphi=-\int_{0}^{2}g\cdot\varphi.
  3. We now consider a function with a jump, viz. f:]0,2[Rf:\left]0,2\right[\rightarrow\mathbb{R} such that

    f(x)={x,0<x12,1x<2.f(x)=\begin{cases}x,& 0<x\leq 1\\ 2,&1\leq x < 2 \end{cases}.

    We ask whether ff is weakly differentiable.

    Suppose there exists a gLloc1(]0,2[)g\in \lloc^{1}(\left]0,2\right[) such that (!) holds for all φC0(]0,2[)\varphi\in\cs(\left]0,2\right[). A quick computation shows that the left-hand side of this equation is φ(1)01φ\varphi(1)-\int_{0}^{1}\varphi, whereas the right-hand side evaluates to 01φg-\int_{0}^{1}\varphi\cdot g. Now, choosing φC0(]0,1[)\varphi\in C_{0}^{\infty}(]0,1[), we find that g1g\equiv 1 a.e. on ]0,1[]0,1[, and choosing φC0(]1,2[)\varphi\in C_{0}^{\infty}(]1,2[), we see that we must have g0g\equiv 0. However, for general φ\varphi, we are left with the nonsensical statement

    φC0(]0,2[φ(1)=0!\forall\varphi\in \cs(\left]0,2\right[\qquad \varphi(1)=0!

Definition. For each kN{0}k\in\mathbb{N}\cup\{0\} and p[1,]p\in[1,\infty], the Sobolev space Wk,p(Ω)W^{k,p}(\Omega) is defined by

Wk,p(Ω):={uLp(Ω):αk, Dαu exists in the weak sense and is in Lp(Ω)}.W^{k,p}(\Omega):=\{u\in L^{p}(\Omega):\forall|\alpha|\leq k,\ D^{\alpha}u\ \textup{exists in the weak sense and is in }L^{p}(\Omega)\}.

For uWk,p(Ω)u\in W^{k,p}(\Omega), we introduce the Sobolev norm:

uk,p:={(αkDαupp)1/p,p<αkDαu,p= ||u||_{k,p}:=\begin{cases} \left(\sum_{|\alpha|\leq k}||\D^{\alpha}u||_{p}^{p} \right)^{1/p},&p<\infty\\ \sum_{|\alpha|\leq k}||\D^{\alpha}u||_{\infty},&p=\infty\end{cases}

For p=2p=2, this norm arises from the inner product

<u,v>k:=αk<Dαu,Dαv>=αkΩDαuDαv.\left<u,v\right>_{k}:=\sum_{|\alpha|\leq k}\left<\D^{\alpha}u,\D^{\alpha}v\right>=\sum_{|\alpha|\leq k}\int_{\Omega}\overline{\D^{\alpha}u}\cdot \D^{\alpha}v.

Lemma 1.3. (Wk,p(Ω),k,p)(W^{k,p}(\Omega),||\cdot||_{k,p}) is a Banach space and (Wk,2(Ω),<,>k)(W^{k,2}(\Omega),\left<\cdot,\cdot\right>_{k}) a Hilbert space.

Proof. We proceed in steps:

Remark. If we wish to differentiate between Sobolev norms corresponding to Sobolev spaces over different domains, we shall write k,p,Ω||\cdot||_{k,p,\Omega} for the norm on Wk,p(Ω)W^{k,p}(\Omega); likewise, we shall sometimes write p,Ω||\cdot||_{p,\Omega} for the norm on Lp(Ω)L^{p}(\Omega).