Week 10: Higher interior regularity (continued), boundary regularity

Higher interior regularity

We now prove a higher regularity theorem which states that if the coefficients of LL are sufficiently smooth and ff is kk-times weakly differentiable, then a solution uW1,2(Ω)u\in W^{1,2}(\Omega) to Lu=fLu=f on Ω\Omega is (k+2)(k+2)-times weakly differentiable.

Theorem 10.1 (higher regularity). Suppose uW1,2(Ω)u\in W^{1,2}(\Omega) solves

Lu=f on ΩLu=f\ \textup{on }\Omega

with aij,bi,cCk+1(Ω)a_{ij},b^{i},c\in C^{k+1}(\Omega) and fHk,2(Ω)f\in H^{k,2}(\Omega) for some kN{0}k\in\mathbb{N}\cup\{0\}. Then uWlock+2,2(Ω)u\in \wloc^{k+2,2}(\Omega) and for each UΩU\Subset\Omega,

uk+2,2,UCk(fk,2+u2),||u||_{k+2,2,U}\leq C_{k}\cdot \left(||f||_{k,2} + ||u||_{2}\right),

where Ck>0C_{k}>0 depends only on kk, UU, Ω\Omega and LL.

Proof. We have already proved the case k=0k=0. Suppose the claim is true for kNk\in\mathbb{N} fixed. If uW1,2(Ω)u\in W^{1,2}(\Omega) solves Lu=fLu=f with aij,bi,cCk+2(Ω)a_{ij},b^{i},c\in C^{k+2}(\Omega) and fWk+1,2(Ω)f\in W^{k+1,2}(\Omega), then the inductive hypothesis implies that uWlock+2,2(Ω)u\in \wloc^{k+2,2}(\Omega). Fix r{1,,n}r\in\{1,\dots,n\}, VΩV\Subset\Omega and φC0(V)\varphi\in C_{0}^{\infty}(V). Plugging v=rφv=-\partial_{r}\varphi into (*) and using the fact that uW2,2(V)u\in W^{2,2}(V), we see that the left-hand side may be written as

aijiuj(rφ)=aiji(ru)jφ(jraijiu+raijiju)φ.\int a_{ij}\partial_{i}u\cdot\partial_{j}(-\partial_{r}\varphi)= \int a_{ij}\partial_{i}(\partial_{r}u)\cdot \partial_{j}\varphi - \int\left(\partial_{j}\partial_{r}a_{ij}\cdot \partial_{i}u+\partial_{r}a_{ij}\cdot \partial_{i}\partial_{j}u \right)\cdot \varphi.

On the other hand, the right-hand side may be written as

(fbiiucu)(rφ)=(rfrbiiubiirurcucru)φ.\int(f-b^{i}\partial_{i}u-cu)\cdot (-\partial_{r}\varphi) =\int(\partial_{r}f - \partial_{r}b^{i}\cdot \partial_{i}u - b^{i}\cdot \partial_{i}\partial_{r}u - \partial_{r}c \cdot u - c\partial_{r}u)\varphi.

Rearranging, we deduce that Lru=f1L\partial_{r}u=f_{1} weakly, where

f1=rfrbiiurcu+jraijiu+raijijuHk(V).f_{1}=\partial_{r}f -\partial_{r}b^{i}\partial_{i}u-\partial_{r}c\cdot u+\partial_{j}\partial_{r}a_{ij}\cdot \partial_{i}u + \partial_{r}a_{ij}\cdot \partial_{i}\partial_{j}u\in H^{k}(V).

Therefore, by the inductive hypothesis, ruWlock+2,2(V)\partial_{r}u\in \wloc^{k+2,2}(V) so that ruWlock+2,2(Ω)\partial_{r}u\in\wloc^{k+2,2}(\Omega) and ultimately uWlock+3,2(Ω)u\in \wloc^{k+3,2}(\Omega). The inductive hypothesis also yields the estimate for UVΩU\Subset V\Subset\Omega

kuk+2,2,UCk(f1k,2,V+ku2,V).||\partial_{k}u||_{k+2,2,U}\leq C_{k}'\left(||f_{1}||_{k,2,V} + ||\partial_{k}u||_{2,V}\right).

However, it follows from Hölder's inequality and the Leibniz rule, as well as the fact that the coefficients of LL and their derivatives up to order k+2k+2 are bounded on VV that

f1k,2,VCk(fk+1,2+uk+2,2,V),||f_{1}||_{k,2,V}\leq C_{k}''\left(||f||_{k+1,2} + ||u||_{k+2,2,V}\right),

where CkC_{k}'' depends only on kk, VV and the coefficients of LL. Finally, combining these two estimates and the inductive step's estimate yields the desired estimate.

Corollary 10.2 (smoothness). Suppose uW1,2(Ω)u\in W^{1,2}(\Omega) solves Lu=fLu=f on Ω\Omega with aij,bi,c,fC(Ω)a_{ij},b^{i},c,f\in C^{\infty}(\Omega). Then uC(Ω)u\in C^{\infty}(\Omega).

Proof. By the preceding theorem, for each kNk\in \mathbb{N}, we see that uWlock,2(Ω)u\in \wloc^{k,2}(\Omega). By the Sobolev embedding theorem, for each mNm\in\mathbb{N}, we may choose kk sufficiently large so as to deduce that uu is equal to a Cm(Ω)C^{m}(\Omega) function almost everywhere. Since mm is arbitrary, we have established the claim.

Boundary regularity

We now turn to the question of whether weak solutions to Lu=fLu=f lie in Wk,2(Ω)W^{k,2}(\Omega) for k>1k>1 and under appropriate additional assumptions on LL and Ω\Omega, a phenomenon we refer to as boundary regularity. Our approach will be similar to the case of interior regularity. We first note the following lemma, which is an analogue of Lemma 6.3 and Corollary 6.6.

Lemma 10.3. Let 0<r1<r2<10<r_{1}<r_{2}<1 and p]1,[p\in\left]1,\infty\right[.

δihuk1,p,B+(0,r1)uk,p,B+(0,r2)||\delta_{i}^{h}u||_{k-1,p,B^{+}(0,r_{1})}\leq ||u||_{k,p,B^{+}(0,r_{2})}

holds.

δihuk1,p,B+(0,r1)C,||\delta_{i}^{h}u||_{k-1,p,B^{+}(0,r_{1})}\leq C,

then 1u,,n1uHk1,p(B+(0,r2))\partial_{1}u,\dots,\partial_{n-1}u\in H^{k-1,p}(B^{+}(0,r_{2})) and iuk1,p,B+(0,r2)C||\partial_{i}u||_{k-1,p,B^{+}(0,r_{2})}\leq C.

We first consider the case Ω=B+(0,r)\Omega=B^{+}(0,r) for appropriate r>0r>0. The following lemma gets us regularity up to (part of) the boundary lying in the hyperplane {xn=0}\{x^{n}=0\}.

Lemma 10.4. Let r]12,1[r\in\left]\frac{1}{2},1\right[ and suppose LL is an elliptic operator over B+(0,r)B^{+}(0,r) satisfying the additional condition aijC1(B+(0,r))a_{ij}\in C^{1}(\overline{B^{+}(0,r)}). If uH01,2(B+(0,r))u\in H_{0}^{1,2}(B^{+}(0,r)) is a weak solution to the equation

Lu=fLu=f

on B+(0,r)B^{+}(0,r), then uW2,2(B+(0,12))u\in W^{2,2}(B^{+}(0,\frac{1}{2})) and

u2,2,B+(0,12)C(L,r)(f2+u2).||u||_{2,2,B^{+}(0,\frac{1}{2})}\leq C(L,r)\cdot (||f||_{2} + ||u||_{2}).

Proof. Let ηC0(Rn)\eta\in \cs(\mathbb{R}^{n}) be such that ηB(0,12)1\left.\eta\right|_{B(0,\frac{1}{2})}\equiv 1, 0η10\leq \eta\leq 1 and supp ηB(0,r)\supp\eta\subset B(0,r). As in the proof of Theorem 9.7, we may write the condition 'Lu=fLu=f weakly' as the equation

aijiujv=f~v,\int a_{ij}\cdot\partial_{i}u\cdot\partial_{j}v=\int\widetilde{f}\cdot v,

which should hold for all vH01,2(B+(0,r))v\in H_{0}^{1,2}(B^{+}(0,r)), where f~=fbiiucu\widetilde{f}=f-b^{i}\partial_{i}u-cu. We now let v=δkh(η2δkhu)v=-\delta_{k}^{-h}(\eta^{2}\delta_{k}^{h}u) for small hRh\in\mathbb{R} and k{1,,n1}k\in\{1,\dots,n-1\}. Note that vv is clearly an element of W1,2(B+(0,r))W^{1,2}(B^{+}(0,r)). To see that it lies in H01,2(B+(0,r))H_{0}^{1,2}(B^{+}(0,r)), we write it out more explicitly:

v(x)=1h2(η2(xhek)(u(x)u(xhek)+η2(x)(u(x)u(x+hek))))v(x)=\frac{1}{h^{2}}\left(\eta^{2}(x-he_{k})\cdot\left(u(x) - u(x-he_{k}) + \eta^{2}(x)\cdot\left(u(x) - u(x+he_{k}) \right) \right) \right)

Taking traces of both sides and using the properties of trace operator (and the fact that hh is small), we see that vv has trace zero so that it lies in H01,2(B+(0,r))H_{0}^{1,2}(B^{+}(0,r)). Now, proceeding analogously to Theorem 9.7, we deduce that

aijiujvλ02η2Dδkhu2c1B+(0,r)Du2\int a_{ij}\partial_{i}u\cdot\partial_{j}v\geq \frac{\lambda_{0}}{2}\int\eta^{2}|\D \delta_{k}^{h}u|^{2} - c_{1}\int_{B^{+}(0,r)}|\D u|^{2}

and

f~vλ04η2Dδkhu2+c2B+(0,r)f2+u2+Du2\int\widetilde{f}v\leq \frac{\lambda_{0}}{4}\int\eta^{2}|\D\delta_{k}^{h}u|^{2} + c_{2}\int_{B^{+}(0,r)}|f|^{2} + |u|^{2} + |\D u|^{2}

for c1,c2>0c_{1},c_{2}>0 depending only on LL and rr so that

B+(0,12)Dδkhu2η2Dδkhu2c3B+(0,r)f2+u2+Du2.\int_{B^{+}(0,\frac{1}{2})}|\D\delta_{k}^{h}u|^{2}\leq \int \eta^{2}|\D\delta_{k}^{h}u|^{2}\leq c_{3}\int_{B^{+}(0,r)}|f|^{2} + |u|^{2} + |\D u|^{2}.

Using the preceding lemma and its proof, we deduce that for all k{1,,n1}k\in \{1,\dots,n-1\}, kuW1,2(B+(0,12))\partial_{k}u\in W^{1,2}(B^{+}(0,\frac{1}{2})) and

B+(0,12)Dku2c3B+(0,r)f2+u2+Du2.\int_{B^{+}(0,\frac{1}{2})}|\D \partial_{k}u|^{2}\leq c_{3}\int_{B^{+}(0,r)}|f|^{2} + |u|^{2} + |\D u|^{2}.

As for nu\partial_{n}u, we first note by interior regularity (Theorem 9.7) that uWloc2,2(B+(0,r))u\in \wloc^{2,2}(B^{+}(0,r)) so that the equation Lu=fLu=f actually holds almost everywhere. Therefore,

i(aijju)=f~-\partial_{i}(a_{ij}\partial_{j}u) = \widetilde{f}

almost everywhere. In particular, the left-hand side is equal to

annn2ui+j<2naijijui,j=1niaijju.-a_{nn}\partial_{n}^{2}u - \sum_{i+j<2n}a_{ij}\partial_{i}\partial_{j}u - \sum_{i,j=1}^{n}\partial_{i}a_{ij}\cdot \partial_{j}u.

Since for all vRnv\in\mathbb{R}^{n} we have the condition aijvivjλ0v2a_{ij}v^{i}v^{j}\geq \lambda_{0}|v|^{2}, taking vi=δniv^{i}=\delta^{i}_{n} yields the inequality annλ0a_{nn}\geq \lambda_{0}. In particular, we deduce that

n2u2C(L)(i+j<2niju2+Du2+f~2).|\partial_{n}^{2}u|^{2}\leq C(L)\left( \sum_{i+j<2n}|\partial_{i}\partial_{j}u|^{2} + |\D u|^{2} + |\widetilde{f}|^{2} \right).

Since each term on the right-hand side is summable by the preceding computation, we deduce that n2uL2(B+(0,12)\partial_{n}^{2}u\in L^{2}(B^{+}(0,\frac{1}{2}), and estimating f~2|\widetilde{f}|^{2} from above as usual, we deduce that

u2,2,B+(0,12)c4(f2+u1,2).||u||_{2,2,B^{+}(0,\frac{1}{2})}\leq c_{4}\left(||f||_{2} + ||u||_{1,2} \right).

Finally, taking v=uv=u in the equation `Lu=fLu=f weakly,' we obtain after carrying out a similar computation to the above that u1,2,B+(0,r)c5(f2+u2)||u||_{1,2,B^{+}(0,r)}\leq c_{5}\left(||f||_{2} + ||u||_{2} \right). Combining the above two inequalities establishes the claim.

Theorem 10.5 (boundary regularity). Suppose Ω\Omega is a bounded domain of class C2C^{2} and uH01,2(Ω)u\in H_{0}^{1,2}(\Omega) is a weak solution to the equation

Lu=f,Lu=f,

where LL is the usual (divergence-form) elliptic operator satisfying the additional condition aijC1(Ω)a_{ij}\in C^{1}(\overline{\Omega}). Then uW2,2(Ω)u\in W^{2,2}(\Omega) and the estimate

u2,2C(f2+u2),||u||_{2,2}\leq C\left(||f||_{2}+||u||_{2} \right),

where CC depends only on Ω\Omega and LL.

Proof. Recall that by definition, for each xΩx\in \partial\Omega, we may find a neighbourhood NxxN_{x}\ni x and a C2C^{2} diffeomorphism Φx:NxB(0,1)\Phi_{x}:N_{x}\rightarrow B(0,1) such that Φx(x)=0\Phi_{x}(x)=0, Φx(NxΩ)=B+(0,1)\Phi_{x}(N_{x}\cap \Omega)=B^{+}(0,1) and Φx(NxΩ)=B(0,1){xn=0}\Phi_{x}(N_{x}\cap \partial\Omega)=B(0,1)\cap \{x^{n}=0\}. It suffices to show that for each xΩx\in\partial\Omega,

u2,2,Φx1(B+(0,12))C(f2+u1,2),||u||_{2,2,\Phi_{x}^{-1}(B^{+}(0,\frac{1}{2}))}\leq C\left(||f||_{2} + ||u||_{1,2} \right),

since we may pick a partition of unity subordinate to a (finite) covering {Φxi1(B(0,12))}i=1N{Ωδ}\{\Phi_{x_{i}}^{-1}(B(0,\frac{1}{2}))\}_{i=1}^{N}\cup \{\Omega_{\delta}\} of Ω\overline{\Omega} to deduce an estimate of the form

u2,2C(f2+u1,2);(#)||u||_{2,2}\leq C\left(||f||_{2} + ||u||_{1,2} \right);\tag{\#}

Choosing v=uv=u in the defining equation of a weak solution to Lu=fLu=f and applying the usual tricks then yields a bound of the form u1,2C(u2+f2)||u||_{1,2}\leq C'\cdot (||u||_{2} + ||f||_{2}).

To streamline the proof, we define the following functions on B+(0,3/4)B^{+}(0,3/4):

u:=uΦx1c:=cΦx1f:=fΦx1bi:=(bkkΦxi)Φx1aij:=(aklkΦxilΦxj)Φx1\begin{aligned} \underline{u}&:=u\circ \Phi_{x}^{-1}\\ \underline{c}&:=c\circ \Phi_{x}^{-1}\\ \underline{f}&:=f\circ \Phi_{x}^{-1}\\ \underline{b}^{i}&:=(b^{k}\cdot \partial_{k}\Phi_{x}^{i})\circ \Phi_{x}^{-1}\\ \underline{a}_{ij}&:=(a_{kl}\cdot \partial_{k}\Phi_{x}^{i}\cdot\partial_{l}\Phi_{x}^{j})\circ \Phi_{x}^{-1} \end{aligned}

Note that uW1,2(B+(0,3/4))\underline{u}\in W^{1,2}(B^{+}(0,3/4)), c,biL(B+(0,3/4))\underline{c},\underline{b}^{i}\in L^{\infty}(B^{+}(0,3/4)), aij=ajiC1(B+(0,3/4))\underline{a}_{ij}=\underline{a}_{ji}\in C^{1}(\overline{B^{+}(0,3/4)}) and fL2(B+(0,3/4))\underline{f}\in L^{2}(B^{+}(0,3/4)). Moreover, aij\underline{a}_{ij} is positive definite, and for any vRnv\in \mathbb{R}^{n},

(aijΦx)vivj=akl(kΦxivi)(lΦxjvj)λ0DΦxTv2λ0λ1v2,(\underline{a}_{ij}\circ \Phi_{x})v^{i}v^{j}=a_{kl}\left(\partial_{k}\Phi_{x}^{i} v^{i} \right) \left(\partial_{l}\Phi_{x}^{j}v^{j} \right)\geq \lambda_{0}|\D\Phi_{x}^{T}\cdot v |^{2}\geq\lambda_{0}\lambda_{1}|v|^{2},

where λ1:=infv=1,yΦx1(B(0,34))DΦxT(y)v2>0\lambda_{1}:=\inf_{|v|=1,y\in \Phi_{x}^{-1}(B(0,\frac{3}{4}) )}|\D\Phi_{x}^{T}(y)\cdot v|^{2}>0 since Φx1(B(0,34))Nx\Phi_{x}^{-1}(B(0,\frac{3}{4}))\Subset N_{x}.

Now, fixing φC01(Φx1(B+(0,3/4)))\varphi\in C_{0}^{1}(\Phi_{x}^{-1}(B^{+}(0,3/4))), the equation BL(u,φ)=fφB_{L}(u,\varphi)=\int f\varphi implies after a brief computation that

(aklkul(φΦx1)+bkku(φΦx1)+cu(φΦx1))Φx(t)dt=(f(φΦx1))Φx(t)dt.\int\left( \underline{a}_{kl}\partial_{k}\underline{u}\partial_{l}(\varphi\circ \Phi_{x}^{-1}) + \underline{b}^{k}\partial_{k}\underline{u}\cdot (\varphi\circ \Phi_{x}^{-1}) + \underline{c}\underline{u}\cdot (\varphi\circ \Phi_{x}^{-1})\right)\circ \Phi_{x}(t)dt= \int (\underline{f}\cdot(\varphi\circ \Phi_{x}^{-1}))\circ \Phi_{x}(t) dt.

Making the change of variables t=Φx1(s)t=\Phi_{x}^{-1}(s) and letting φ:=(ψ/detDΦx1)Φx\varphi:=(\psi/|\det \D\Phi_{x}^{-1}|)\circ \Phi_{x} for ψC0(B+(0,3/4))\psi\in C_{0}^{\infty}(B^{+}(0,3/4)), we deduce that

i(aijju)+biiu+cu=:Lu=f\partial_{i}(\underline{a}_{ij}\partial_{j}\underline{u})+\underline{b}^{i}\partial_{i}\underline{u} + \underline{c}\cdot \underline{u}=:\underline{L}\underline{u}=\underline{f}

in the weak sense so that by Lemma 10.4, uW2,2(B+(0,1/2))\underline{u}\in W^{2,2}(B^{+}(0,1/2)) and we have an estimate of the form

u2,2,B+(0,1/2)C(f2,B+(0,3/4)+u2,B+(0,3/4))||\underline{u}||_{2,2,B^{+}(0,1/2)}\leq C\left(||\underline{f}||_{2,B^{+}(0,3/4)} + ||\underline{u}||_{2,B^{+}(0,3/4)} \right)

where CC depends only on LL and Ω\Omega (through Φx\Phi_{x}). Writing uu and ff in terms of u\underline{u} and f\underline{f}, we may then use this inequality to establish (#).

As with interior regularity, we may argue by induction to establish higher-order boundary regularity subject to additional conditions on Ω\Omega and LL. In this case, we again first consider the case of a half ball. We state the relevant result without proof.

Theorem 10.6 (higher boundary regularity). Suppose Ω\Omega is a bounded domain of class Ck+2C^{k+2} and uH01,2(Ω)u\in H_{0}^{1,2}(\Omega) is a weak solution to the equation

Lu=f,Lu=f,

where LL is the usual (divergence-form) elliptic operator satisfying the additional conditions aij,bi,cCk+1(Ω)a_{ij},b^{i},c\in C^{k+1}(\overline{\Omega}) and fHk(Ω)f\in H^{k}(\Omega). Then uWk+2,2(Ω)u\in W^{k+2,2}(\Omega) and the estimate

uk+2,2Ck(fk,2+u2),||u||_{k+2,2}\leq C_{k}\left(||f||_{k,2}+||u||_{2} \right),

where CkC_{k} depends only on kk, Ω\Omega and LL. Moreover, if Ω\Omega is a bounded domain of class CC^{\infty} and aij,bi,c,fC(Ω)a_{ij},b^{i},c,f\in C^{\infty}(\overline\Omega), then uC(Ω)u\in C^{\infty}(\overline\Omega).

Remark 10.7. If a solution uH01,2(Ω)u\in H_{0}^{1,2}(\Omega) to Lu=fLu=f is known to be unique, then we may combine Theorem 9.6 and Theorem 10.6 to obtain an estimate of the form uk+2,2Ckfk,2||u||_{k+2,2}\leq C_{k}'||f||_{k,2}.