Week 3: Approximation by CkC^{k} functions up to the boundary

We now take up the question of whether uHk,p(Ω)u\in H^{k,p}(\Omega) may be approximated by a function vCk(Ω)v\in C^{k}(\overline{\Omega}), where we assume Ω\overline{\Omega} is bounded. It turns out that this is possible provided Ω\Omega is sufficiently regular.

Definition 3.1. An open bounded set ΩRn\Omega\subset\mathbb{R}^{n} is said to be a domain of class CkC^{k} if for every xΩx\in \partial\Omega, there exists an open neighbourhood NxxN_{x}\ni x and a CkC^{k}-diffeomorphism Φx:NxB(0,1)Rn\Phi_{x}:N_{x}\rightarrow B(0,1)\subset\mathbb{R}^{n} with the following properties:

In a certain sense, the approximation properties of Sobolev spaces on domains of class CkC^{k} may be deduced from those of Sobolev spaces on the upper half-ball B+(0,r):=B(0,r){xn>0}B^{+}(0,r):=B(0,r)\cap \{x^{n}>0\}. We establish this in a sequence of lemmas.

Lemma 3.2. Suppose {Ui}i=1N\{U_{i}\}_{i=1}^{N} is a collection of open sets such that Ωi=1NUi\overline{\Omega}\subset \bigcup_{i=1}^{N}U_{i} and let Ωi:=UiΩ\Omega_{i}:=U_{i}\cap \Omega. If uHk,p(Ωi)u\in H^{k,p}(\Omega_{i}) for all ii, then uHk,p(Ω)u\in H^{k,p}(\Omega).

Proof. Let {ψi}i=1N\{\psi_{i}\}_{i=1}^{N} be a partition of unity subordinate to the cover {Ui}\{U_{i}\}. Now, uHk,p(Ωi)u\in H^{k,p}(\Omega_{i}) iff there is a sequence {uji}j=1Ck,p(Ω)\{u^{i}_{j}\}_{j=1}^{\infty}\subset C^{k,p}(\Omega) with ujijuu^{i}_{j}\xrightarrow{j\rightarrow\infty}u in Wk,p(Ωi)W^{k,p}(\Omega_{i}). Set

uj:=i=1sujiψi.u_{j}:=\sum_{i=1}^{s}u^{i}_{j}\cdot \psi_{i}.

Clearly ujCk,p(Ω)u_{j}\in C^{k,p}(\Omega), and since we may write u=i=1suψiu=\sum_{i=1}^{s}u\cdot \psi_{i}, by the triangle inequality

ujuk,pi=1s(ujiu)ψik,p,ΩiC(ψ,k,p)i=1sujiuk,p,Ωij0,||u_{j}-u||_{k,p} \leq \sum_{i=1}^{s} ||(u^{i}_{j}-u)\cdot \psi_{i}||_{k,p,\Omega_{i}}\leq C(\psi,k,p)\cdot \sum_{i=1}^{s}||u^{i}_{j}-u||_{k,p,\Omega_{i}}\xrightarrow{j\rightarrow\infty}0,

where we have used the Leibniz rule as in Theorem 2.11.

Remark 3.3. Lemma 3.2 may be viewed as the converse to the fact that uHk,p(Ω)uHk,p(V)u\in H^{k,p}(\Omega)\Rightarrow u\in H^{k,p}(V) for any VΩV\subset\Omega.

Lemma 3.4. Let URnU\subset\mathbb{R}^{n} be open and bounded such that U=Γ1Γ2\partial U=\Gamma_{1}\cup\Gamma_{2}, Γ1Γ2=\Gamma_{1}\cap \Gamma_{2}=\emptyset and γ1=V×{0}\gamma_{1}=V\times\{0\}, VRn1V\subset\mathbb{R}^{n-1} open. If uHk,p(U)u\in H^{k,p}(U), then for any AUA\subset U with AUΓ1\overline{A}\subset U\cup \Gamma_{1}, there exists a sequence {um}C(A)\{u_{m}\}\subset C^{\infty}(\overline{A}) such that ummuu_{m}\xrightarrow{m\rightarrow\infty}u in Wk,p(A)W^{k,p}(A).

Proof. For uLp(U)u\in L^{p}(U) and ε>0\eps>0, define the mapping Jεu:AKJ_{\eps}'u:\overline{A}\rightarrow\mathbb{K} by

Jεu(x):=εnRnρ(x+2εenzε)u(z)dz=Rnρ(w)u(x+2εenεw)dw,J_{\eps}'u(x):=\eps^{-n}\int_{\mathbb{R}^{n}}\rho\left(\frac{x+2\eps e_{n}-z}{\eps} \right)\cdot u(z)dz = \int_{\mathbb{R}^{n}}\rho(w)\cdot u(x+2\eps e_{n}-\eps w)dw,

where as before we assume u0u\equiv 0 outside UU. Note that zρ(x+2εenzε)z\mapsto \rho(\frac{x+2\eps e_{n}-z}{\eps}) is supported in B(x+2εen,ε)B(x+ 2\eps e_{n},\eps) so that it does not intersect Γ1\Gamma_{1} and is compactly contained in Ω\Omega for ε<13dist(A,Γ2)\eps<\frac{1}{3}\dist(A,\Gamma_{2}).

JεuJ_{\eps}'u possesses the basic properties of JεuJ_{\eps}u of Theorem 1.1, specifically:

Combining all of the above, we see that if uWk,p(U)u\in W^{k,p}(U), then {um:=J1/mu}\{u_{m}:=J_{1/m}'u\} is a sequence with the desired property.

Corollary 3.5. If Ω\Omega is a domain of class CkC^{k}, then Hk,p(Ω)=Ck(Ω)H^{k,p}(\Omega)=\overline{C^{k}(\overline\Omega)}.

Proof. For each xΩx\in \partial\Omega, let Φx\Phi_{x} be as in the definition of a domain of class CkC^{k} and set Ωδ:={xΩ:dist(x,Ω)>δ}\Omega_{\delta}:=\{x\in \Omega:\dist(x,\partial\Omega)>\delta \}. Clearly

ΩxΩΦx1(B(0,12))δ>0Ωδ.\overline\Omega\subset \bigcup_{x\in \partial\Omega}\Phi_{x}^{-1}(B(0,\frac{1}{2})) \cup \bigcup_{\delta>0}\Omega_{\delta}.

By compactness, we may find {xi}i=1NΩ\{x_{i}\}_{i=1}^{N}\subset \partial\Omega and a single δ>0\delta>0 such that

ΩΩδi=1NΦxi1(B(0,12)).\overline\Omega\subset \Omega_{\delta}\cup \bigcup_{i=1}^{N}\Phi_{x_{i}}^{-1}(B(0,\frac{1}{2})).

Let {ψ0,ψ1,,ψN}\{\psi_{0},\psi_{1},\dots,\psi_{N}\} be a partition of unity subordinate to this cover and vCk,p(Ω)v\in C^{k,p}(\Omega). Define

vm:=ψ0v+i=1NψiJ1/m(vΦxi1)Φxi,v_{m}:= \psi_{0}\cdot v + \sum_{i=1}^{N}\psi_{i}\cdot J_{1/m}'(v\circ \Phi_{x_{i}}^{-1})\circ \Phi_{x_{i}},

where we take U:=B+(0,1)U:=B^{+}(0,1) and A:=B+(0,12)A:=B^{+}(0,\frac{1}{2}) in the definition of J1/m(vΦxi1)J_{1/m}'(v\circ \Phi_{x_{i}}^{-1}). Clearly vmCk(Ω)v_{m}\in C^{k}(\overline{\Omega}), since J1/m(vΦxi1)C(B+(0,12))J_{1/m}'(v\circ \Phi_{x_{i}}^{-1})\in C^{\infty}(\overline{B^{+}(0,\frac{1}{2})}). Using the same tricks as before, we compute that

vmvk,pC(k,p,ψ)i=1NJ1/m(vΦxi1)Φxivk,p,Φxi1(B(0,12)).||v_{m}-v||_{k,p}\leq C(k,p,\psi)\cdot\sum_{i=1}^{N}||J_{1/m}'(v\circ \Phi_{x_{i}}^{-1})\circ \Phi_{x_{i}} - v||_{k,p,\Phi_{x_{i}}^{-1}(B(0,\frac{1}{2}))}.

To see that this tends to 00, we compute for each ii, setting Φ:=Φxi\Phi:=\Phi_{x_{i}} and A:=B+(0,12)A:=B^{+}(0,\frac{1}{2}) for simplicity of notation:

Φ1ADα(J1/m(vΦ1)Φv)p=ADα(J1/m(vΦ1)Φv)pΦ1detDΦ1Φ.\int_{\Phi^{-1}A}|\D^{\alpha}(J_{1/m}'(v\circ \Phi^{-1})\circ \Phi - v)|^{p}= \int_{A}|\D^{\alpha}(J_{1/m}'(v\circ \Phi^{-1})\circ \Phi - v)|^{p}\circ \Phi^{-1}\cdot |\det\D \Phi|^{-1}\circ \Phi.

Now, noting that detDΦ|\det\D \Phi| is bounded from below by a positive constant, using the chain rule and liberally bounding from above, we may estimate this expression from above:

C(F,α,p)βαADβ(J1/m(vF1)(vF1))pm0\leq C(F,\alpha,p)\sum_{\beta\leq\alpha}\int_{A}|\D^{\beta}(J_{1/m}'(v\circ F^{-1}) - (v\circ F^{-1})) |^{p}\xrightarrow{m\rightarrow\infty} 0

since we also have that vF1Ck,p(A)v\circ F^{-1}\in C^{k,p}(A). Therefore, for any ε>0\eps>0, we may choose mm large enough so that vmv<ε||v_{m}-v||<\eps.

Another useful characterisation of Hk,p(Ω)H^{k,p}(\Omega) functions is in terms of compactly supported functions. We first establish the following lemmas.

Lemma 3.6. There exists a constant C>0C>0 depending on kk and pp such that for any uCk(B+(0,r))u\in C^{k}(\overline{B^{+}(0,r)}), we may find a uCk(B(0,r))u'\in C^{k}(\overline{B(0,r)}) such that uB+(0,r)u\left.u'\right|_{\overline{B^{+}(0,r)}}\equiv u and uk,pCuk,p||u'||_{k,p}\leq C\cdot ||u||_{k,p}.

Proof. Define u:B(0,r)Ku':\overline{B(0,r)}\rightarrow\mathbb{K} such that

u(x)={u(x),xn0j=1k+1cju(x1,,xn1,xnj),xn<0,u'(x)=\begin{cases}u(x),&x^{n}\geq 0\\ \displaystyle\sum_{j=1}^{k+1}c_{j}u(x^{1},\dots,x^{n-1},\frac{-x^{n}}{j}),&x^{n}<0 ,\end{cases}

where the {cj}j=1k+1\{c_{j}\}_{j=1}^{k+1} satisfy j=1k+1cj(1j)m1=1\sum_{j=1}^{k+1}c_{j}\cdot \left(-\frac{1}{j}\right)^{m-1}=1 for all m{1,,k+1}m\in\{1,\dots,k+1\}. It follows that this relation uniquely determines the {cj}\{c_{j}\} and ensure that uu' is CkC^{k} across {xn=0}\{x^{n}=0\}. Moreover, it is clear that for each α\alpha with αk|\alpha|\leq k, DαupC(k,p)Dαup||\D^{\alpha}u'||_{p}\leq C(k,p)||\D^{\alpha}u||_{p}, which establishes the claim.

Lemma 3.7. Suppose Ω\Omega is a domain of class CkC^{k}. There exists a constant C>0C>0 depending on kk, pp and Ω\Omega such that for each uCk(Ω)u\in C^{k}(\overline\Omega), we may find a uC0k(Rn)u'\in C_{0}^{k}(\mathbb{R}^{n}) with uΩuΩ\left.u'\right|_{\Omega}\equiv \left.u\right|_{\Omega} and

uk,pCuk,p.||u'||_{k,p}\leq C\cdot ||u||_{k,p}.

Proof. As before, we cover ΩΩδi=1NΦxi1(B(0,12))\overline\Omega\subset \Omega_{\delta}\cup \bigcup_{i=1}^{N}\Phi_{x_{i}}^{-1}(B(0,\frac{1}{2})) and let {ψ0,,ψN}\{\psi_{0},\dots,\psi_{N}\} be a subordinate partition of unity. Note that for each ii, uΦxi1Ck(B+(0,12))u\circ \Phi_{x_{i}}^{-1}\in C^{k}(\overline{B^{+}(0,\frac{1}{2})}). By the preceding lemmas, we may extend this function to a viCk(B(0,12))v_{i}\in C^{k}(\overline{B(0,\frac{1}{2})}) such that vik,pC(k,p)uk,p||v_{i}||_{k,p}\leq C(k,p)\cdot ||u||_{k,p}. Now let

u=ψ0u+i=1NψiviΦxi.u'=\psi_{0}\cdot u + \sum_{i=1}^{N}\psi_{i}\cdot v_{i}\circ \Phi_{x_{i}}.

It immediately follows that uu' possesses the desired properties.

Remark 3.8. Let Ω\Omega be a domain of class CkC^{k} and VRnV\Subset\mathbb{R}^{n} an open set such that ΩV\Omega\Subset V and let ψ:Rn[0,1]\psi:\mathbb{R}^{n}\rightarrow [0,1] be a smooth function such that ψ1\psi\equiv 1 on Ω\Omega and supp ψV\supp\psi\Subset V. Using the same techniques as before, we may establish the estimate

ψuk,pC(ψ,k,p)uk,p||\psi\cdot u'||_{k,p}\leq C(\psi,k,p)\cdot ||u'||_{k,p}

for uu' as in Lemma 3.7. In particular, replacing uu' with ψu\psi\cdot u', we deduce that for any uCk(Ω)u\in C^{k}(\overline\Omega) and p>1p>1, there exists a uC0k(Ω)u'\in C_{0}^{k}(\Omega) such that uΩuΩ\left.u'\right|_{\Omega}\equiv \left.u\right|_{\Omega}, supp uV\supp u' \Subset V and uk,pC(k,p,V)uk,p||u'||_{k,p}\leq C(k,p,V)\cdot ||u||_{k,p}. A cursory inspection of the proofs of Lemmas 3.6 and 3.7 show that the mapping

Ck(Ω)uuC0k(V)C^{k}(\overline\Omega)\ni u\mapsto u'\in C_{0}^{k}(V)

is linear, and the condition on the norm of uu' amounts to its continuity. We call this an extension operator.

Corollary 3.9. For any uHk,p(Ω)u\in H^{k,p}(\Omega) and ε>0\eps>0, there exist u1C0k(Ω)u_{1}\in C_{0}^{k}(\Omega) and u2C0(Ω)u_{2}\in C_{0}^{\infty}(\Omega) such that uu1k,p<ε||u-u_{1}||_{k,p}<\eps and uu2k,p<ε||u-u_{2}||_{k,p}<\eps.

Proof. By Corollary 3.5, for any uHk,p(Ω)u\in H^{k,p}(\Omega) and ε>0\eps>0, we may find a vCk(Ω)v\in C^{k}(\overline{\Omega}) such that uvk,p,Ω<ε2||u-v||_{k,p,\Omega}<\frac{\eps}{2}, and by Lemma 3.7 this function is the restriction to Ω\overline{\Omega} by a function vC0k(Rn)v'\in C_{0}^{k}(\mathbb{R}^{n}), establishing the equality. To establish the second, consider the sequence {wm:=J1/mv}C0(Rn)\{w_{m}:=J_{1/m}v'\}\subset C_{0}^{\infty}(\mathbb{R}^{n}), the inclusion following from Theorem 1.1. By Remark 2.6, we may choose N>0N>0 large enough so that wNvk,p,Rn<ε2||w_{N}-v'||_{k,p,\mathbb{R}^{n}}<\frac{\eps}{2}, which immediately implies that wNvk,p,Ω<ε2||w_{N}-v'||_{k,p,\Omega}<\frac{\eps}{2}. By the triangle inequality, we have that uwNk,p,Ω<ε||u-w_{N}||_{k,p,\Omega}<\eps, establishing the second equality.