Week 5: Sobolev embedding theorems (continued)

Morrey's inequality

We now turn our attention to W1,p(Ω)W^{1,p}(\Omega) in the case p>np>n. In this case, we obtain considerably more regularity. We first establish the decisive inequality.

Theorem 5.1 (Morrey's inequality). Suppose n>1n>1 and p]n,]p\in]n,\infty], and let γ=1np\gamma=1-\frac{n}{p}. There exists a constant CC depending only on nn and pp such that for any uC1(Rn)u\in C^{1}(\mathbb{R}^{n}),

u0+γCu1,p.||u||_{0+\gamma}\leq C\cdot ||u||_{1,p}.

Proof. Fix xRnx\in \mathbb{R}^{n} and r>0r>0. We proceed in steps:

Step 1. There exists a constant C>0C>0 depending only on nn such that

1μ(B(x,r))B(x,r)u(y)u(x)dyCB(x,r)Du(y)yxn1dy.\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u(y)-u(x)|dy \leq C\cdot \int_{B(x,r)}\frac{|\D u(y)|}{|y-x|^{n-1}}dy.

Subproof. We compute, using the coarea formula:

1μ(B(x,r))B(x,r)u(y)u(x)dy=1μ(B(x,r))0rB(x,t)u(y)u(x)dy dt=1μ(B(x,r))0rtn1B(0,1)u(x+tz)u(x)dz dtB(0,1)0tDu(x+sz)ds dz1ωnrn0rtn10tB(0,1)Du(x+sz)dz=B(x,s)Dus1n ds dt=1ωnrn0rtn10tB(x,s)Du(z)xzn1dz dsB(x,r)Du(y)xyn1dy dt=1nωnB(x,r)Du(y)xyn1dy.\begin{aligned}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u(y)-u(x)|dy &= \frac{1}{\mu(B(x,r))}\cdot \int_{0}^{r}\int_{\partial B(x,t)}|u(y)-u(x)|dy\ dt\\&=\underbrace{\frac{1}{\mu(B(x,r))}\int_{0}^{r}t^{n-1}\int_{\partial B(0,1)}|u(x+tz) - u(x)|dz\ dt}_{\leq\int_{\partial B(0,1)}\int_{0}^{t}|\D u|(x+sz)ds\ dz}\\ &\leq \frac{1}{\omega_{n}r^{n}}\int_{0}^{r}t^{n-1}\int_{0}^{t}\underbrace{\int_{\partial B(0,1)}|\D u|(x+sz)dz}_{=\int_{\partial B(x,s)|\D u|\cdot s^{1-n}}}\ ds\ dt\\ &=\frac{1}{\omega_{n}r^{n}}\int_{0}^{r}t^{n-1}\underbrace{\int_{0}^{t} \int_{\partial B(x,s)}\frac{|\D u|(z)}{|x-z|^{n-1}}dz\ ds}_{\leq \int_{B(x,r)} \frac{|\D u|(y)}{|x-y|^{n-1}}dy}\ dt\\& = \frac{1}{n\omega_{n}}\int_{B(x,r)}\frac{|\D u|(y)}{|x-y|^{n-1}}dy.\end{aligned}

Step 2. There exists a constant C>0C>0 depending only on nn and pp such that

supRnuCu1,p.\sup_{\mathbb{R}^{n}}|u|\leq C\cdot ||u||_{1,p}.

Subproof. Fix xRnx\in\mathbb{R}^{n} and note that

ωnu(x)=B(x,1)u(x)dyB(x,1)u(x)u(y)dy+B(x,1)u(y)dy.\omega_{n}\cdot |u(x)| = \int_{B(x,1)}|u(x)|dy \leq \int_{B(x,1)}|u(x)-u(y)|dy + \int_{B(x,1)}|u(y)|dy.

On the one hand, the second term may be controlled using Hölder's inequality:

B(x,1)uωn11pup,Rn\int_{B(x,1)}|u|\leq \omega_{n}^{1-\frac{1}{p}}||u||_{p,\mathbb{R}^{n}}

On the other hand, by Step 1, we may also handle the first term using Hölder's inequality:

B(x,1)u(x)u(y)dyB(x,1)Du(y)yxn1dyDup,B(x,1)(B(x,1)1yx(n1)p/(p1)dy)11/p=(nωnp1pn)11pDup,B(x,1).\begin{aligned}\int_{B(x,1)}|u(x)-u(y)|dy &\leq \int_{B(x,1)}\frac{|\D u|(y)}{|y-x|^{n-1}}dy\\ &\leq ||\D u||_{p,B(x,1)}\cdot \left(\int_{B(x,1)}\frac{1}{|y-x|^{(n-1)p/(p-1)}}dy \right)^{1-1/p}\\&=\left(n\cdot \omega_{n}\cdot \frac{p-1}{p-n} \right)^{1-\frac{1}{p}}\cdot ||\D u||_{p,B(x,1)}\end{aligned}.

Altogether, we are left with the inequality

u(x)ωn1/p(np1pn)11p(up+Dup)|u(x)|\leq \omega_{n}^{-1/p}\cdot\left(n\cdot \frac{p-1}{p-n} \right)^{1-\frac{1}{p}} \left(||u||_{p} + ||\D u||_{p} \right)

Step 3. There exists a constant C>0C>0 depending only on nn and pp such that

[u]γCDup.[u]_{\gamma}\leq C\cdot ||\D u||_{p}.

Subproof. Let x,yRnx,y\in\mathbb{R}^{n} with xyx\neq y and set Ω=B(x,xy)B(y,xy)\Omega=B(x,|x-y|)\cap B(y,|x-y|). As before, we first note that

μ(Ω)u(x)u(y)Ωu(x)u(z)dz+Ωu(y)u(z).\mu(\Omega)\cdot |u(x)-u(y)| \leq \int_{\Omega} |u(x)-u(z)|dz + \int_{\Omega} |u(y)-u(z)|.

By step 1, we may estimate the first term as

Ωu(x)u(z)dzB(x,xy)u(x)u(z)dzμ(B(x,xy))nωnB(x,xy)Du(z)xzn1dz.\int_{\Omega}|u(x)-u(z)|dz\leq\int_{B(x,|x-y|)}|u(x)-u(z)|dz \leq \frac{\mu\left(B(x,|x-y|)\right)}{n\omega_{n}}\cdot \int_{B(x,|x-y|)}\frac{|\D u|(z)}{|x-z|^{n-1}}dz.

Now, Hölder's inequality implies that

B(x,xy)Du(z)xzn1dzDup(B(x,xy)1xz(n1)p/(p1)dz)=(nωn)(p1)/pxyγDup.\int_{B(x,|x-y|)}\frac{|\D u|(z)}{|x-z|^{n-1}}dz \leq ||\D u||_{p}\cdot \left(\int_{B(x,|x-y|)} \frac{1}{|x-z|^{(n-1)p/(p-1)}}dz \right)=(n\omega_{n})^{(p-1)/p}|x-y|^{\gamma}\cdot ||\D u||_{p}.

Arguing similarly for the second term, we are left with the inequality

u(x)u(y)xyγ(nωn)1pμ(B(x,xy))μ(Ω)Dup.\frac{|u(x)-u(y)|}{|x-y|^{\gamma}}\leq (n\omega_{n})^{-\frac{1}{p}}\cdot\frac{\mu(B(x,|x-y|)) }{\mu(\Omega)}\cdot ||\D u||_{p}.

It now suffices to show that μ(B(x,xy))μ(Ω)\frac{\mu(B(x,|x-y|))}{\mu(\Omega)} is bounded from above by a constant depending only on nn. To see that this is the case, note that z:=x+12(yx)Ωz:=x+\frac{1}{2}(y-x)\in \Omega and B(z,12yx)ΩB(z,\frac{1}{2}|y-x|)\subset\Omega so that

μ(B(x,xy))μ(Ω)μ(B(x,xy))μ(B(z,12yx))=2n.\frac{\mu(B(x,|x-y|))}{\mu(\Omega)}\leq \frac{\mu(B(x,|x-y|))}{\mu(B(z,\frac{1}{2}|y-x|))} = 2^{n}.

Combining all of the above then establishes the claim.

As with the Gagliardo-Nirenberg-Sobolev inequality, we may use this inequality to prove an embedding theorem.

Corollary 5.2. Suppose n>1n>1, VRnV\subset\mathbb{R}^{n} is open, p]n,[p\in\left]n,\infty\right[ and γ=1np\gamma=1-\frac{n}{p}. There exists a continuous embedding

ι:H01,p(V)Cγ(V)\iota: H_{0}^{1,p}(V)\hookrightarrow C^{\gamma}(\overline{V})

such that for all uH01,p(V)u\in H_{0}^{1,p}(V), ι(u)u\iota(u)\equiv u almost everywhere. In particular, if ΩRn\Omega\subset\mathbb{R}^{n} is a bounded domain of class C1C^{1}, then we also obtain the existence of a continuous embedding ι:W1,p(Ω)Cγ(Ω)\iota:W^{1,p}(\Omega)\hookrightarrow C^{\gamma}(\overline{\Omega}) such that for all uW1,p(Ω)u\in W^{1,p}(\Omega), ι(u)u\iota(u)\equiv u almost everywhere.

Proof. For clarity, we write the elements of H01,p(V)H_{0}^{1,p}(V) as equivalence classes [u][u].

Consider the inclusion ι:C01(V)H01,p(V)Cγ(Ω)\iota:C_{0}^{1}(V)\subset H_{0}^{1,p}(V)\rightarrow C^{\gamma}(\overline\Omega) defined by [u]u[u]\mapsto u. Morrey's inequality implies that for all uC01(V)C1(Rn)u\in C_{0}^{1}(V)\subset C^{1}(\mathbb{R}^{n}),

[ι([u])]γc(n,p)[u]1,p.[\iota([u])]_{\gamma}\leq c(n,p)\cdot ||[u]||_{1,p}.

By Lemma 4.5, ι\iota extends uniquely to a continuous linear mapping ι:H01,p(V)Cγ(Ω)\iota:H_{0}^{1,p}(V)\rightarrow C^{\gamma}(\overline\Omega). If {un}\{u_{n}\} is an approximating sequence for some [u]H01,p(V)[u]\in H_{0}^{1,p}(V), then since both {[un]}\{[u_{n}]\} and {[ι([un])]=[un]}\{[\iota([u_{n}])]=[u_{n}]\} converge in Lloc1(V)\lloc^{1}(V) by Hölder's inequality, we must have that ι([u])u\iota([u])\equiv u almost everywhere for all uH01,p(V)u\in H_{0}^{1,p}(V), i.e. ι\iota is a continuous embedding with the desired property. The latter claim follows from choosing VV such that ΩV\Omega\Subset V and considering the following chain of continuous embeddings, the last one being a restriction:

W1,p(Ω)H0k,p(V)Cγ(V)Cγ(Ω)W^{1,p}(\Omega)\hookrightarrow H_{0}^{k,p}(V)\hookrightarrow C^{\gamma}(\overline V)\hookrightarrow C^{\gamma}(\overline \Omega)

Remark 5.3. In the case where n=1n=1, we have the inclusion

W1,p(]a,b[)C11p(]a,b[),W^{1,p}(]a,b[)\hookrightarrow C^{1-\frac{1}{p}}(]a,b[),

which depends only on an application of Hölder's inequality and the characterisation of W1,1(]a,b[)W^{1,1}(]a,b[) in terms of absolutely continuity. In fact, for uW1,p(]a,b[)u\in W^{1,p}(]a,b[), there exists a vC11p([a,b])v\in C^{1-\frac{1}{p}}([a,b]) such that uvu\equiv v a.e. and

v(y)v(x)upyx11p|v(y)-v(x)|\leq ||u'||_{p}\cdot |y-x|^{1-\frac{1}{p}}

for all x,y]a,b[x,y\in]a,b[.

Remark 5.4. Note that if Ω\Omega is a bounded domain of class C1C^{1} and uW1,(Ω)u\in W^{1,\infty}(\Omega), then uW1,p(Ω)u\in W^{1,p}(\Omega) for all p<p<\infty so that uC1np(Ω)u\in C^{1-\frac{n}{p}}(\overline\Omega) for every p>np>n after possibly redefining uu on a set of measure zero. By the proof of Morrey's inequality, we actually have the estimate

u(x)u(y)xy1np2n(nωn)1pDup2n(nωn)1p(μ(Ω))1/pDu\frac{|u(x)-u(y)|}{|x-y|^{1-\frac{n}{p}}}\leq 2^{n}\cdot (n\omega_{n})^{-\frac{1}{p}}\cdot ||\D u||_{p}\leq 2^{n}\cdot (n\omega_{n})^{-\frac{1}{p}}\cdot (\mu(\Omega))^{1/p}\cdot ||\D u||_{\infty}

for x,yΩx,y\in\Omega with xyx\neq y. We may take the limit pp\rightarrow\infty on both sides to obtain

u(x)u(y)xy2nDu.\frac{|u(x)-u(y)|}{|x-y|}\leq 2^{n}\cdot ||\D u||_{\infty}.

This implies that uu is actually Lipschitz continuous. The same argument applies for uH01,p(V)u\in H_{0}^{1,p}(V) provided VV is bounded.

Higher-order Sobolev inequalities

By appropriately successively applying the Gagliardo-Nirenberg-Sobolev inequality and Morrey's inequality, we obtain the following higher-order Sobolev embeddings:

Theorem 5.5. Suppose ΩRn\Omega\subset\mathbb{R}^{n} is a bounded domain of class C1C^{1}.

γ={npnp+1,np∉Nany positive number <1,npN.\gamma=\begin{cases}\lfloor\frac{n}{p}\rfloor - \frac{n}{p} + 1,&\frac{n}{p}\not{\in}\mathbb{N}\\ \textup{any positive number }<1,&\frac{n}{p}\in\mathbb{N}.\end{cases}

Remark 5.6. The idea here is that depending on how weakly differentiable uu is relative to nn and pp, it is either in a higher LpL^{p} space or a (higher) Hölder space. For example, fixing mNm\in\mathbb{N} and p=2p=2, we may ask the following question: How large should kk be so that Wk,2(Ω)Cm(Ω)W^{k,2}(\Omega)\hookrightarrow C^{m}(\Omega)? According to the latter case, we ought to have KmK\geq m, i.e. km+n2+1k\geq m+\lfloor\frac{n}{2}\rfloor +1. Therefore, if uWk,2(Ω)u\in W^{k,2}(\Omega) for all kNk\in\mathbb{N}, then uC(Ω)u\in C^{\infty}(\Omega). These higher embedding theorems will be crucial in proving classical differentiability of weak solutions to elliptic PDE later on in the course.

Compact embeddings

Recall that the Gagliardo-Nirenberg-Sobolev inequality implies the continuous embedding

W1,p(Ω)Lp(Ω)(Lq(Ω))W^{1,p}(\Omega)\hookrightarrow L^{p^{\ast}}(\Omega)\left(\hookrightarrow L^{q}(\Omega)\right)

whenever Ω\Omega is a bounded domain of class C1C^{1} and p[1,n[p\in\left[1,n\right[, where p=npnpp^{\ast}=\frac{np}{n-p} and q[1,p[q\in[1,p^{\ast}[. It turns out we can say more about the latter embedding.

Theorem 5.7 (Rellich-Kondrachov). Suppose ΩRn\Omega\subset\mathbb{R}^{n} is a bounded domain of class C1C^{1}. If p[1,n[p\in[1,n[ and q[1,p[q\in[1,p^{\ast}[, then the embedding W1,p(Ω)Lq(Ω)W^{1,p}(\Omega)\hookrightarrow L^{q}(\Omega) is compact.

Proof. We shall show that the embedding H01,p(V)Lq(V)H_{0}^{1,p}(V)\hookrightarrow L^{q}(V) is compact for VRnV\subset\mathbb{R}^{n} open and bounded. Choosing VV so that VΩV\Supset\Omega then establishes the claim (why?). Let {um}m=1H01,p(V)\{u_{m}\}_{m=1}^{\infty}\subset H_{0}^{1,p}(V) be a bounded sequence. We proceed in steps.

Step 1. Jεumε0umJ_{\eps}u_{m}\xrightarrow{\eps\searrow 0}u_{m} in Lq(V)L^{q}(V) uniformly in mm.

Subproof. Fix vC0(V)v\in C_{0}^{\infty}(V) and compute for xVx\in V that

(Jεvv)(x)=B(0,1)ρ(y)(v(xεy)v(x))dy=εB(0,1)ρ(y)01Dv(xεty)y dt dy,(J_{\eps}v-v)(x)=\int_{B(0,1)}\rho(y)\cdot (v(x-\eps y)-v(x))dy=-\eps\int_{B(0,1)}\rho(y)\int_{0}^{1}\D v(x-\eps t y)\cdot y\ dt\ dy,

whence

VJεvvεVB(0,1)01ρ(y)Dv(xεty)dt dy dx.\int_{V}|J_{\eps}v - v|\leq \eps\int_{V}\int_{B(0,1)}\int_{0}^{1}\rho(y)\cdot |\D v(x-\eps t y)|dt\ dy\ dx.

By Tonelli's theorem, we may interchange the integrals at will. In particular, since

VDv(xεty)dx=VεtyDvVDv\int_{V} |\D v(x-\eps t y)|dx= \int_{V-\eps t y}|\D v|\leq \int_{V}|\D v|

due to the fact that supp vV\supp v\Subset V, we are left with the inequality

VJεvvεVDv.\int_{V}|J_{\eps}v - v|\leq \eps\cdot \int_{V}|\D v|.

By approximation, we deduce that this inequality holds for all vH01,p(V)v\in H_{0}^{1,p}(V) so that

VJεumumεDum1εDump(μ(V))11p.\int_{V}|J_{\eps}u_{m} - u_{m}|\leq \eps||\D u_{m}||_{1} \leq \eps\cdot ||\D u_{m}||_{p}\cdot (\mu(V))^{1-\frac{1}{p}}.

Therefore, Jεumε0umJ_{\eps}u_{m}\xrightarrow{\eps\searrow 0}u_{m} in L1L^{1} uniformly in mm. To establish uniform convergence in Lq(V)L^{q}(V), we make use of the interpolation inequality

JεumumqJεumum1θJεumump1θ,||J_{\eps}u_{m}-u_{m} ||_{q}\leq ||J_{\eps}u_{m}-u_{m}||_{1}^{\theta} \cdot ||J_{\eps}u_{m}-u_{m}||_{p^{\ast}}^{1-\theta},

where θ]0,1[\theta\in\left]0,1\right[ is such that 1q=θ+1θp\frac{1}{q} = \theta + \frac{1-\theta}{p^{\ast}}. Since Jεumpump||J_{\eps}u_{m}||_{p^{\ast}}\leq ||u_{m}||_{p^{\ast}} and by Gagliardo-Nirenberg-Sobolev umpconstDumpconst||u_{m}||_{p^{\ast}}\leq \textup{const}\cdot ||\D u_{m}||_{p}\leq\textup{const}, we immediately see that Jεumε0umJ_{\eps}u_{m}\xrightarrow{\eps\searrow 0}u_{m} in LqL^{q} uniformly in mm.

Step 2. For fixed ε>0\eps>0, the sequence {Jεum}m=1\{J_{\eps}u_{m}\}_{m=1}^{\infty} is uniformly bounded and equicontinuous.

Subproof. Note that for xRnx\in\mathbb{R}^{n},

Jεum(x)=εnRnρ(xzε)u(z)dzεnsupρum1C(ε,supmump).|J_{\eps}u_{m}(x)|=\eps^{-n}\left|\int_{\mathbb{R}^{n}}\rho(\frac{x-z}{\eps})u(z)dz \right|\leq\eps^{-n}\cdot \sup\rho\cdot ||u_{m}||_{1}\leq C(\eps,\sup_{m}||u_{m}||_{p}).

This establishes boundedness. As for equicontinuity, we use the same argument and appeal to Exercise 1 on Tutorial sheet 1:

DJεum(x)=ε(n+1)RnDρ(xzε)u(z)dzC(ε,supmump).|\D J_{\eps}u_{m}(x)|= \eps^{-(n+1)}\left| \int_{\mathbb{R}^{n}}\D \rho(\frac{x-z}{\eps})u(z)dz \right|\leq C(\eps,\sup_{m}||u_{m}||_{p}).

Step 3. For fixed δ>0\delta>0 there exists a subsequence {umj}\{u_{m_{j}}\} of {um}\{u_{m}\} such that lim supj,kumjumkqδ\limsup_{j,k\rightarrow\infty}||u_{m_{j}}-u_{m_{k}}||_{q}\leq \delta.

Subproof. By Step 1, there exists an ε>0\eps>0 such that Jεumumqδ2||J_{\eps}u_{m}-u_{m}||_{q}\leq \frac{\delta}{2} for all mNm\in\mathbb{N}, and by Step 2, we may appeal to the Arzelà-Ascoli theorem to pass to a subsequence {Jεumj}\{J_{\eps}u_{m_{j}}\} converging in C(V)C(V), i.e.

limj,ksupVJεumjJεumk=0.\lim_{j,k\rightarrow\infty}\sup_{V}|J_{\eps}u_{m_{j}}-J_{\eps}u_{m_{k}}|=0.

This implies that limj,kJεumjJεumkq=0\lim_{j,k\rightarrow\infty}||J_{\eps}u_{m_{j}}-J_{\eps}u_{m_{k}}||_{q}=0. Altogether, we obtain that

lim supj,kumjumkqlim supj,k(umjJεumjq+JεumjJεumkq+Jεumkumkq)δ.\limsup_{j,k\rightarrow\infty}||u_{m_{j}}-u_{m_{k}}||_{q}\leq \limsup_{j,k\rightarrow\infty}\left(||u_{m_{j}}-J_{\eps}u_{m_{j}}||_{q} + ||J_{\eps}u_{m_{j}} - J_{\eps}u_{m_{k}}||_{q} + ||J_{\eps}u_{m_{k}} - u_{m_{k}}||_{q} \right)\leq \delta.

Now, applying Step 3 with δ=1\delta=1, we extract a subsequence {umj1}\{u_{m_{j}}^{1} \} of {um}\{u_{m}\} with lim supj,kumj1umk1q1\limsup_{j,k\rightarrow\infty}||u_{m_{j}}^{1}-u_{m_{k}}^{1}||_{q}\leq 1. More generally, for each l{2,3,}l\in \{2,3,\dots\}, we inductively define the subsequence {umjl}j=1\{u^{l}_{m_{j}}\}_{j=1}^{\infty} of {umjl1}j=1\{u^{l-1}_{m_{j}}\}_{j=1}^{\infty} obtained from Step 3 with δ=1l\delta=\frac{1}{l}, i.e. such that

lim supj,kumjlumklq1l\limsup_{j,k\rightarrow\infty}||u^{l}_{m_{j}}-u^{l}_{m_{k}}||_{q}\leq \frac{1}{l}

for each lNl\in\mathbb{N}. Finally, we consider the sequence {vj}j=1\{v_{j}\}_{j=1}^{\infty} such that vj=umjjv_{j}=u^{j}_{m_{j}}, which is a subsequence of {um}\{u_{m}\}. Moreover, for each NNN\in\mathbb{N}, {vl}l=k\{v_{l}\}_{l=k}^{\infty} is a subsequence of {umjN}j=1\{u^{N}_{m_{j}}\}_{j=1}^{\infty} whenever kNk\geq N so that

lim supj,kvjvkq=lim supj,kumjNumkNq1N.\limsup_{j,k\rightarrow\infty}||v_{j}-v_{k}||_{q}=\limsup_{j,k\rightarrow\infty}||u^{N}_{m_{j}}-u^{N}_{m_{k}}||_{q}\leq \frac{1}{N}.

Since NN is arbitrary, we conclude that vjvkj,k0||v_{j}-v_{k}||\xrightarrow{j,k\rightarrow\infty}0 so that {vj}\{v_{j}\} is the desired subsequence of {um}\{u_{m}\}.

Remark 5.8. Since p=npnp>pp^{\ast}=\frac{np}{n-p}>p and pp^{\ast}\rightarrow\infty as pnp\nearrow n, we have that the embedding W1,p(Ω)Lp(Ω)W^{1,p}(\Omega)\hookrightarrow L^{p}(\Omega) is compact for p[1,n]p\in[1,n]. Moreover, for p>np>n, we may use Morrey's inequality and the Arzelà-Ascoli theorem to conclude that this embedding is compact in the case where p>np>n. Using similar techniques, we also deduce that the embedding H01,p(Ω)Lp(Ω)H_{0}^{1,p}(\Omega)\hookrightarrow L^{p}(\Omega) is compact for all pp.