Week 6: Poincaré inequality, difference quotients and the trace operator

Poincaré inequality

The following inequality is an important consequence of the Rellich-Kondrachov inequality. Given fL1(Ω)f\in L^{1}(\Omega), write (f)Ω:=1μ(Ω)Ωf(f)_{\Omega}:=\frac{1}{\mu(\Omega)}\int_{\Omega}f.

Theorem 6.1 (Poincaré inequality). Let Ω\Omega be a connected bounded domain of class C1C^{1}. For any p[1,]p\in[1,\infty] there exists a constant C>0C>0 depending only on nn, pp and Ω\Omega such that whenever uW1,p(Ω)u\in W^{1,p}(\Omega),

u(u)ΩpCDup.||u-(u)_{\Omega}||_{p}\leq C\cdot ||\D u||_{p}.

Proof. Suppose this is not the case so that for all kNk\in\mathbb{N}, there exists a ukW1,p(Ω)u_{k}\in W^{1,p}(\Omega) such that

uk(uk)Ωp>kDukp.||u_{k}-(u_{k})_{\Omega}||_{p}>k\cdot ||\D u_{k}||_{p}.

Define vk:=uk(uk)Ωuk(uk)Ωpv_{k}:=\frac{u_{k}-(u_{k})_{\Omega}}{||u_{k}-(u_{k})_{\Omega}||_{p}} for each kNk\in \mathbb{N}. Clearly vkp=1||v_{k}||_{p}=1, (vk)Ω=0(v_{k})_{\Omega}=0, and

DvkΩ=1uk(uk)ΩpDukp<1k.||\D v_{k}||_{\Omega}=\frac{1}{||u_{k}-(u_{k})_{\Omega}||_{p}}\cdot ||\D u_{k}||_{p}<\frac{1}{k}.

In particular, {vk}k=1\{v_{k}\}_{k=1}^{\infty} is a bounded sequence in W1,p(Ω)W^{1,p}(\Omega) so that by the Rellich-Kondrachov theorem, we may pass to a subsequence convergent in Lp(Ω)L^{p}(\Omega), which we again denote by {vk}\{v_{k}\}. Set v=Lplimkvkv=L^{p}\lim_{k\rightarrow\infty}v_{k}. We immediately obtain that vp=1||v||_{p}=1 and (v)Ω=0(v)_{\Omega}=0. On the other hand, if φC0(Ω)\varphi\in C_{0}^{\infty}(\Omega),

Ωiφvk=Ωφivk1kΩφk0,\left|\int_{\Omega}\partial_{i}\varphi\cdot v_{k} \right|=\left|\int_{\Omega}\varphi\cdot \partial_{i}v_{k}\right|\leq \frac{1}{k}\cdot \int_{\Omega}|\varphi|\xrightarrow{k\rightarrow\infty}0,

i.e. Ωiφv=0\int_{\Omega}\partial_{i}\varphi\cdot v=0 so that vW1,p(Ω)v\in W^{1,p}(\Omega) with Dv0\D v\equiv 0. Since Ω\Omega is connected (exercise 3 of tutorial sheet 1), we deduce that there exists a constant C0C_{0} such that vC0v\equiv C_{0}. Since (v)Ω=0(v)_{\Omega}=0, we must have C0=0C_{0}=0 so that v0v\equiv 0, but then this contradicts the statement that vp=1||v||_{p}=1!

Remark 6.2. In the case of a ball B(x,r)B(x,r), we can get a clearer picture of how the constant in Poincaré's inequality depends on rr using scaling techniques as follows: If Ω=B(0,1)\Omega=B(0,1), then we know that there is a constant C(n,p)>0C(n,p)>0 such that for all uW1,p(B(0,1))u\in W^{1,p}(B(0,1)),

u(u)B(0,1)p,B(0,1)CDup,B(0,1).(*)||u-(u)_{B(0,1)}||_{p,B(0,1)}\leq C\cdot ||\D u||_{p,B(0,1)}.\tag{*}

Now suppose vW1,p(B(x,r))v\in W^{1,p}(B(x,r)) and define u:B(0,1)Ku:B(0,1)\rightarrow\mathbb{K} such that

zv(x+rz).z\mapsto v(x+rz).

It is not hard to see that uW1,p(B(0,1))u\in W^{1,p}(B(0,1)), and its weak derivative is given by Du(z)=rDv(x+rz)\D u(z)=r\cdot \D v(x+rz) for almost all zB(0,1)z\in B(0,1). Now, the Poincaré inequality (*) holds for uu, and it is easily seen by changing variables in the various integrals that (u)B(0,1)=(v)B(x,r)(u)_{B(0,1)}=(v)_{B(x,r)}, u(u)B(0,1)p,B(0,1)=rn/pv(v)B(x,r)p,B(x,r)||u-(u)_{B(0,1)}||_{p,B(0,1)}=r^{-n/p}||v-(v)_{B(x,r)}||_{p,B(x,r)} and Dup,B(0,1)=r1npDvp,B(x,r)||\D u||_{p,B(0,1)}=r^{1-\frac{n}{p}}||\D v||_{p,B(x,r)} so that (*) reduces to

v(v)B(x,r)p,B(x,r)CrDvp,B(x,r),||v-(v)_{B(x,r)}||_{p,B(x,r)}\leq Cr||\D v||_{p,B(x,r)},

i.e. the constant in Poincaré's inequality linearly depends on rr.

Difference quotients

Suppose uC1(Ω)u\in C^{1}(\Omega) and recall that for each xΩx\in \Omega and i{1,,n}i\in \{1,\dots,n\},

iu(x)=limh0u(x+hei)u(x)h,\partial_{i}u(x)=\lim_{h\rightarrow 0}\frac{u(x+he_{i})-u(x)}{h},

and for any UΩU\Subset \Omega, the right-hand limit exists uniformly in xUx\in U. More generally, given uLloc1(Ω)u\in \lloc^{1}(\Omega), i{1,,n}i\in\{1,\dots,n\} and hRh\in\mathbb{R}, we define the difference quotient δihu:ΩK\delta_{i}^{h}u:\Omega\rightarrow \mathbb{K} by

δihu(x):=u(x+hei)u(x)h.\delta_{i}^{h}u(x):=\frac{u(x+he_{i}) - u(x)}{h}.

It turns out that if uH1,p(Ω)u\in H^{1,p}(\Omega), then δihuh0iu\delta_{i}^{h}u\xrightarrow{h\rightarrow 0}\partial_{i}u in Llocp(Ω)\lloc^{p}(\Omega). This is a consequence of the following lemma.

Lemma 6.3. Suppose uHk,p(Ω)u\in H^{k,p}(\Omega) and UΩU\Subset\Omega. The inequality

δihuk1,p,Uuk,p,Ω||\delta_{i}^{h}u||_{k-1,p,U}\leq ||u||_{k,p,\Omega}

holds whenever 0<h<dist(U,Ω)0<|h|<\dist(U,\partial\Omega), and limh0δihuiuk1,p,U=0\lim_{h\rightarrow 0}||\delta_{i}^{h}u-\partial_{i}u||_{k-1,p,U}=0, i.e. δihuh0iu\delta_{i}^{h}u\xrightarrow{h\rightarrow 0}\partial_{i}u in Wlock1,p(Ω)W^{k-1,p}_{\textup{loc}}(\Omega).

Proof. First suppose uCk,p(Ω)u\in C^{k,p}(\Omega) and note that for any α\alpha, DαδihuδihDαu\D^{\alpha}\delta_{i}^{h}u\equiv \delta_{i}^{h}\D^{\alpha}u on UU. Moreover, whenever vC1,p(Ω)v\in C^{1,p}(\Omega), we compute that

δihvp=1h01tv(x+thei)dtp01iv(x+thei)dtp01ivp(x+thei)dt,|\delta_{i}^{h}v|^{p}=\left|\frac{1}{h}\int_{0}^{1}\frac{\partial}{\partial t}v(x+the_{i})dt\right|^{p}\leq \left|\int_{0}^{1}|\partial_{i}v|(x+the_{i})dt\right|^{p}\leq \int_{0}^{1}|\partial_{i}v|^{p}(x+the_{i})dt,

where in the last step we used Hölder's inequality. Integrating over UU and applying Tonelli's theorem,

Uδihvp01Uivp(x+thei)dx dt=01(U+theiivp)dtΩiup.\int_{U}|\delta_{i}^{h}v|^{p}\leq \int_{0}^{1}\int_{U}|\partial_{i}v|^{p}(x+the_{i})dx\ dt= \int_{0}^{1}\left(\int_{U+the_{i}}|\partial_{i}v|^{p}\right)dt\leq \int_{\Omega}|\partial_{i}u|^{p}.

Therefore, combining the above, we deduce that

δihuk1,p,U=(αk1UDαδihup)1/p(αk1ΩiDαup)1/puk,p,Ω.(#)||\delta_{i}^{h}u||_{k-1,p,U}=\left(\sum_{|\alpha|\leq k-1}\int_{U}|\D^{\alpha}\delta_{i}^{h}u|^{p} \right)^{1/p}\leq \left(\sum_{|\alpha|\leq k-1}\int_{\Omega}|\partial_{i}\D^{\alpha}u|^{p} \right)^{1/p}\leq ||u||_{k,p,\Omega}.\tag{\#}

Now suppose uHk,p(Ω)u\in H^{k,p}(\Omega) and {um}Ck,p(Ω)\{u_{m}\}\subset C^{k,p}(\Omega) is a sequence having uu as its Wk,pW^{k,p}-limit. Applying (#) to {um}\{u_{m}\} and taking the limit mm\rightarrow\infty implies the first claim. To establish the second claim, we use the triangle inequality to deduce that

δihuiuk1,p,Uδih(uum)k1,p,U+δihumiumk1,p,U+i(umu)k1,p,U2uumk,p,Ω+δihumiumk1,p,U.||\delta_{i}^{h}u-\partial_{i}u||_{k-1,p,U}\leq ||\delta_{i}^{h}(u-u_{m})||_{k-1,p,U} + ||\delta_{i}^{h}u_{m}-\partial_{i}u_{m}||_{k-1,p,U} + ||\partial_{i}(u_{m}-u)||_{k-1,p,U}\leq 2 ||u-u_{m}||_{k,p,\Omega} + ||\delta_{i}^{h}u_{m}-\partial_{i}u_{m}||_{k-1,p,U}.

If we choose mm large enough so that uumk,p,Ωε2||u- u_{m}||_{k,p,\Omega}\leq \frac{\eps}{2}, we see that for such mm,

δihuiuk1,p,Uε+δihumiumk1,p,Uh0ε.||\delta_{i}^{h}u-\partial_{i}u||_{k-1,p,U}\leq \eps + ||\delta_{i}^{h}u_{m}-\partial_{i}u_{m}||_{k-1,p,U}\xrightarrow{h\rightarrow 0}\eps.

Hence, lim suph0δihuiuk1,p,Uε\limsup_{h\rightarrow 0}||\delta_{i}^{h}u-\partial_{i}u||_{k-1,p,U}\leq\eps for all ε>0\eps>0, i.e. lim suph0δihuiuk1,p,U=0\limsup_{h\rightarrow 0}||\delta_{i}^{h}u-\partial_{i}u||_{k-1,p,U}=0, establishing the claim.

Note that a direct consequence of this lemma is the following: If uHk,p(Ω)u\in H^{k,p}(\Omega), then for any UΩU\Subset\Omega, δihuk1,p,U||\delta_{i}^{h}u||_{k-1,p,U} is bounded from above, and this bound is independent of hh and UU. We shall show that the converse is true in the case where p]1,[p\in\left]1,\infty\right[. First, we recall an important theorem from functional analysis and one of its consequences.

Theorem 6.4 (Banach-Alaoǧlu). Suppose XX is a reflexive Banach space, i.e. the mapping

ι:X(X)x(ff(x))\begin{aligned}\iota:X&\rightarrow (X^{\ast})^{\ast}\\ x\mapsto&(f\mapsto f(x)) \end{aligned}

is an isomorphism. If {xn}X\{x_{n}\}\subset X is a bounded sequence with xnC||x_{n}||\leq C, then it has a weakly convergent subsequence {xnk}k=1\{x_{n_{k}}\}_{k=1}^{\infty}. Moreover, the weak limit xx of {xnk}\{x_{n_{k}}\} satisfies the inequality xC||x||\leq C.

Examples of reflexive Banach spaces include all finite-dimensional spaces and Lp(Ω)L^{p}(\Omega) for p]1,[p\in\left]1,\infty\right[. We now apply this theorem to deduce some information on bounded sequences in Sobolev spaces.

Lemma 6.5. Suppose p]1,[p\in\left]1,\infty\right[ and {um}Wk,p(Ω)\{u_{m}\}\subset W^{k,p}(\Omega) is a bounded sequence (i.e. umk,pC||u_{m}||_{k,p}\leq C for some C>0C>0 independent of mm) such that ummuu_{m}\xrightharpoondown{m\rightarrow\infty}u in Lp(Ω)L^{p}(\Omega). Then uWk,p(Ω)u\in W^{k,p}(\Omega) and for all αk|\alpha|\leq k, DαummDαu\D^{\alpha}u_{m}\xrightharpoondown{m\rightarrow\infty}\D^{\alpha}u in Lp(Ω)L^{p}(\Omega).

Proof. Fix α\alpha with αk|\alpha|\leq k. The boundedness of {um}\{u_{m}\} in Wk,p(Ω)W^{k,p}(\Omega) implies that for each multiïndex α\alpha with αk|\alpha|\leq k, Dαum\D^{\alpha}u_{m} is bounded in Lp(Ω)L^{p}(\Omega). By applying Banach-Alaoǧlu, we may pass to a subsequence {umk}\{u_{m_{k}}\} such that Dαumkkvα\D^{\alpha}u_{m_{k}}\xrightharpoondown{k\rightarrow\infty}v_{\alpha} in Lp(Ω)L^{p}(\Omega). Now, since for any φC0(Ω)\varphi\in \cs(\Omega)

ΩumkDαφ=(1)αΩDαumkφ,\int_{\Omega}u_{m_{k}}\cdot \D^{\alpha}\varphi= (-1)^{|\alpha|}\int_{\Omega}\D^{\alpha}u_{m_{k}}\cdot \varphi,

and the left-hand side (resp. right-hand side) is a bounded linear function of umku_{m_{k}} (resp. Dαumk\D^{\alpha}u_{m_{k}}), we may take limits to deduce that

ΩuDαφ=(1)αΩvαφ,\int_{\Omega}u\cdot\D^{\alpha}\varphi = (-1)^{|\alpha|}\int_{\Omega}v_{\alpha}\cdot\varphi,

i.e. Dαu\D^{\alpha}u exists and is equal to vαLp(Ω)v_{\alpha}\in L^{p}(\Omega). Since α\alpha was arbitrary, we see that uHk,p(Ω)u\in H^{k,p}(\Omega). To see that DαummDαu\D^{\alpha}u_{m}\xrightharpoondown{m\rightarrow\infty}\D^{\alpha}u in Lp(Ω)L^{p}(\Omega), we first note that for φC0(Ω)\varphi\in \cs(\Omega),

ΩDαumφ=(1)αΩumDαφm(1)αΩuDαφ=ΩDαuφ.\int_{\Omega}\D^{\alpha}u_{m}\cdot \varphi =(-1)^{|\alpha|}\int_{\Omega}u_{m}\cdot \D^{\alpha}\varphi\xrightarrow{m\rightarrow\infty}(-1)^{|\alpha|}\int_{\Omega}u\cdot \D^{\alpha}\varphi = \int_{\Omega}\D^{\alpha}u\cdot\varphi.

Recall that f(Lp(Ω))f\in (L^{p}(\Omega))^{\ast} may be written in the form

f(u)=Ωuvf(u)=\int_{\Omega}u\cdot v

for vLq(Ω)v\in L^{q}(\Omega). In particular, by the triangle inequality and Hölder's inequality,

ΩDαumvΩDαuvΩDαumvφ+ΩDαumφΩDαuφ+ΩDαuφv2Cvφq+ΩDαumφΩDαuφ.\begin{aligned}\left|\int_{\Omega}\D^{\alpha}u_{m}\cdot v - \int_{\Omega}\D^{\alpha}u\cdot v \right|&\leq \int_{\Omega}|\D^{\alpha}u_{m}|\cdot |v-\varphi| + \left|\int_{\Omega}\D^{\alpha}u_{m}\cdot \varphi - \int_{\Omega}\D^{\alpha}u\cdot \varphi \right| + \int_{\Omega}|\D^{\alpha}u|\cdot |\varphi - v|\\ &\leq 2C||v-\varphi||_{q} + \left|\int_{\Omega}\D^{\alpha}u_{m}\cdot \varphi - \int_{\Omega}\D^{\alpha}u\cdot \varphi \right|.\end{aligned}

For fixed ε>0\eps>0, we may choose φ\varphi such that vφε2C.||v-\varphi||\leq \frac{\eps}{2C}. Taking the lim sup\limsup of both sides as mm\rightarrow\infty then ε0\eps\searrow 0 implies DαummDαu\D^{\alpha}u_{m}\xrightharpoondown{m\rightarrow\infty}\D^{\alpha}u in Lp(Ω)L^{p}(\Omega).

Corollary 6.6. Let p]1,[p\in\left]1,\infty\right[, kNk\in\mathbb{N} and uWk1,p(Ω)u\in W^{k-1,p}(\Omega). If there is a constant C>0C>0 such that for all UΩU\Subset\Omega, i{1,,n}i\in \{1,\dots,n\}, hh with 0<h<dist(U,Ω)0<|h|<\dist(U,\partial\Omega)

δihuk1,p,UC,||\delta_{i}^{h}u||_{k-1,p,U}\leq C,

then uWk,p(Ω)u\in W^{k,p}(\Omega).

Proof. Let UΩU\Subset \Omega. By the Banach-Alaoǧlu theorem, for each i{1,,n}i\in\{1,\dots,n\} there exists a sequence hm0h_{m}\rightarrow 0 such that δihmumvi\delta_{i}^{h_{m}}u\xrightharpoondown{m\rightarrow\infty}v_{i} in Lp(U)L^{p}(U), and by the preceding lemma viWk1,p(U)v_{i}\in W^{k-1,p}(U) with DαδihmDαvi\D^{\alpha}\delta_{i}^{h_{m}}\rightharpoondown\D^{\alpha}v_{i} in Lp(U)L^{p}(U) so that, in particular, for φC0(U)\varphi\in C_{0}^{\infty}(U) and αk1|\alpha|\leq k-1,

RnDαviφ=(1)αlimmRnδihmuDαφ=(1)αlimmRnu(δihmDαφ),\int_{\mathbb{R}^{n}}\D^{\alpha}v_{i}\cdot \varphi=(-1)^{|\alpha|}\lim_{m\rightarrow\infty}\int_{\mathbb{R}^{n}}\delta_{i}^{h_{m}}u\cdot \D^{\alpha}\varphi=(-1)^{|\alpha|}\lim_{m\rightarrow\infty}\int_{\mathbb{R}^{n}}u\cdot (-\delta_{i}^{-h_{m}}\D^{\alpha}\varphi),

where in the last step follows from a change of variables. Now, since φ\varphi is smooth and uu locally summable, we may interchange limit and integral to deduce that

RnDαviφ=(1)α+1RnuiDαφ,\int_{\mathbb{R}^{n}}\D^{\alpha}v_{i}\cdot \varphi = (-1)^{|\alpha|+1}\int_{\mathbb{R}^{n}}u\cdot \partial_{i}\D^{\alpha}\varphi,

i.e. Dα+eiu\D^{\alpha+e_{i}}u exists weakly on UU and is equal to DαviLp(U)\D^{\alpha}v_{i}\in L^{p}(U). This implies in particular that uWk,p(U)u\in W^{k,p}(U). Finally, let Ωδ={xΩ:dist(x,Ω)>δ}B(0,δ1)\Omega_{\delta}=\{x\in\Omega:\dist(x,\partial\Omega)>\delta\}\cap B(0,\delta^{-1}) and α=k1|\alpha|=k-1. The bound

ΩδδihDαupCp\int_{\Omega_{\delta}}|\delta_{i}^{h}\D^{\alpha}u|^{p}\leq C^{p}

implies that ΩδiDαupCp\int_{\Omega_{\delta}}|\partial_{i}\D^{\alpha}u|^{p}\leq C^{p}, i.e. for all α\alpha with α=k|\alpha|=k, ΩδDαupCp\int_{\Omega_{\delta}}|\D^{\alpha}u|^{p}\leq C^{p}. Taking the limit δ0\delta\searrow 0 implies that Dαup,ΩC||\D^{\alpha}u||_{p,\Omega}\leq C so that uWk,p(Ω)u\in W^{k,p}(\Omega).

Trace operator

We now turn our attention to the question of `boundary values' of a function uW1,p(Ω)u\in W^{1,p}(\Omega) in the case where Ω\Omega is a bounded domain of class C1C^{1}. Since the boundary Ω\partial\Omega is a set of measure zero, the quantity uΩ\left.u\right|_{\partial\Omega} is a priori not well defined. We can however make sense of this function using the approximation techniques we have been using.

The following lemma is our starting point and tells us how the W1,pW^{1,p} norm of a compactly supported C1C^{1} function on R+n\overline{\mathbb{R}^{n}_{+}} controls its LpL^{p} norm on R+n\partial\mathbb{R}^{n}_{+}.

Lemma 6.7. Let uC01(R+n)u\in C^{1}_{0}(\overline{\mathbb{R}^{n}_{+}}). The following inequality holds:

up,R+npu1,p,R+n.||u||_{p,\partial\mathbb{R}^{n}_{+}}\leq p\cdot ||u||_{1,p,\mathbb{R}^{n}_{+}}.

Proof. We compute, applying the divergence theorem and Young's inequality:

R+nup=R+nnuppR+nup1nupR+n(11p)up+1pnuppR+nup+i=1niup.\int_{\partial\mathbb{R}^{n}_{+}}|u|^{p} = \int_{\mathbb{R}^{n}_{+}}\partial_{n}|u|^{p}\leq p\cdot \int_{\mathbb{R}^{n}_{+}}|u|^{p-1}|\partial_{n}u|\leq p\cdot \int_{\mathbb{R}^{n}_{+}}(1-\frac{1}{p})|u|^{p} + \frac{1}{p}|\partial_{n}u|^{p}\leq p\cdot \int_{\mathbb{R}^{n}_{+}}|u|^{p} + \sum_{i=1}^{n}|\partial_{i}u|^{p}.

Remark 6.8. Note that this lemma says that the mapping C01(R+n)H1,p(R+n)Lp(R+n)C_{0}^{1}(\overline{\mathbb{R}^{n}_{+}})\subset H^{1,p}(\mathbb{R}^{n}_{+})\rightarrow L^{p}(\partial\mathbb{R}^{n}_{+}) given by uuΩu\mapsto \left.u\right|_{\partial\Omega} is continuous. Using the same techniques as Theorem 2.11, it may be shown that H1,p(R+n)=C01(R+n)H^{1,p}(\mathbb{R}^{n}_{+})=\overline{C_{0}^{1}(\overline{\mathbb{R}^{n}_{+}})} so that by Lemma 4.5, it extends uniquely to a continuous mapping H1,p(R+n)Lp(R+n)H^{1,p}(\mathbb{R}^{n}_{+})\rightarrow L^{p}(\partial\mathbb{R}^{n}_{+}), which we call the trace operator. In particular, if uH01,p(Rn)u\in H_{0}^{1,p}(\mathbb{R}^{n}), then u=limmumu=\lim_{m\rightarrow\infty}u_{m} in W1,p(Rn)W^{1,p}(\mathbb{R}^{n}) for a sequence {um}m=1C0(R+n)\{u_{m}\}_{m=1}^{\infty}\subset \cs(\mathbb{R}^{n}_{+}), and by Lemma 4.5,

Tu=limmTum=limmumR+n=0,Tu=\lim_{m\rightarrow\infty}Tu_{m} = \lim_{m\rightarrow\infty}\left.u_{m}\right|_{\partial\mathbb{R}^{n}_{+}}=0,

which is consistent with our intuition.