Week 7: Traces, duals and elliptic equations

We now similarly construct trace operators for bounded domains of class C1C^{1}.

Theorem 7.1. Suppose Ω\Omega is a bounded domain of class C1C^{1}. There is a unique bounded linear operator TΩ:H1,p(Ω)Lp(Ω)T_{\partial\Omega}:H^{1,p}(\Omega)\rightarrow L^{p}(\Omega) such that for all uC1(Ω)u\in C^{1}(\overline\Omega), TΩu=uΩT_{\partial\Omega}u=\left.u\right|_{\partial\Omega}. Moreover, if φC1(Ω)\varphi\in C^{1}(\overline{\Omega}), then for any vH1,p(Ω)v\in H^{1,p}(\Omega), T(vφ)=TvTφT(v\cdot \varphi)=Tv\cdot T\varphi.

Proof. Let uC1(Ω)u\in C^{1}(\overline{\Omega}). As before, we note that ΩxΩΦx1(B(0,12))\partial\Omega\subset \bigcup_{x\in \partial\Omega}\Phi_{x}^{-1}(B(0,\frac{1}{2})) for a suitable collection of C1C^{1} diffeomorphisms {Φx:NxB(0,1)}\{\Phi_{x}:N_{x}\rightarrow B(0,1)\} taking xx to 00 and ΩNx\partial\Omega\cap N_{x} to B(0,1)Rn1B(0,1)\cap \mathbb{R}^{n-1}. By compactness, Ω\partial\Omega is contained in the finite union i=1NΦxi1(B(0,12))\bigcup_{i=1}^{N}\Phi_{x_{i}}^{-1}(B(0,\frac{1}{2})) for some {xi}i=1NΩ\{x_{i}\}_{i=1}^{N}\subset\partial\Omega.

Let {ψi}i=1N\{\psi_{i}\}_{i=1}^{N} be a partition of unity subordinate to this cover. Note that

Ωup=Ωi=1NψiupC(N,p)i=1NΩNxiψiup.\int_{\partial\Omega}|u|^{p}=\int_{\partial\Omega}|\sum_{i=1}^{N}\psi_{i}\cdot u|^{p} \leq C(N,p)\cdot \sum_{i=1}^{N}\int_{\partial\Omega\cap N_{x_{i}}}|\psi_{i}u|^{p}.

Now, setting ϱ(x):=det(rΦxi1sΦxi1)r,s=1n1(x,0)\varrho(x):=\sqrt{\det(\partial_{r}\Phi_{x_{i}}^{-1}\cdot \partial_{s}\Phi_{x_{i}}^{-1})_{r,s=1}^{n-1}}(x,0), which is strictly positive, we know that

ΩNxiψiup=B+(0,1/2)ψiupΦxi1ϱC(Ω,n,p)B+(0,1/2)ψiupΦxi1+D(ψiuΦxi1)pC(Ω,n,p)B+(0,1/2)(up+Dup)Φxi1detDΦxi1=C(Ω,n,p)Φxi1(B+(0,1/2))up+DupCu1,p,Ωp.\begin{aligned}\int_{\partial\Omega\cap N_{x_{i}}}|\psi_{i}u|^{p} = \int_{B^{+}(0,1/2)}|\psi_{i}\cdot u|^{p}\circ \Phi_{x_{i}}^{-1}\cdot \varrho&\leq C(\Omega,n,p)\cdot \int_{B^{+}(0,1/2)}|\psi_{i}\cdot u|^{p}\circ \Phi_{x_{i}}^{-1} + |\D(\psi_{i}\cdot u\circ \Phi_{x_{i}}^{-1})|^{p}\\ &\leq C(\Omega,n,p)\cdot \int_{B^{+}(0,1/2)}\left(|u|^{p}+|\D u|^{p}\right)\circ \Phi_{x_{i}}^{-1}\cdot |\det \D\Phi_{x_{i}}^{-1}|\\ &=C(\Omega,n,p)\cdot \int_{\Phi_{x_{i}}^{-1}(B^{+}(0,1/2))}|u|^{p}+|\D u|^{p}\leq C\cdot ||u||_{1,p,\Omega}^{p}.\end{aligned}

Altogether, we see that up,ΩC(Ω,n,p)u1,p,Ω||u||_{p,\partial\Omega}\leq C(\Omega,n,p)\cdot ||u||_{1,p,\Omega} so that the `restriction to the boundary mapping' C1(Ω)H1,p(Ω)Lp(Ω)C^{1}(\overline{\Omega})\subset H^{1,p}(\Omega)\rightarrow L^{p}(\partial\Omega) is continuous. By Lemma 4.5, it extends uniquely to a continuous linear mapping T:H1,p(Ω)Lp(Ω)T:H^{1,p}(\Omega)\rightarrow L^{p}(\partial\Omega), which is what we sought to prove. The last statement is an immediate consequence of the definition of TT.

The trace operator allows us to nicely characterise H01,p(Ω)H_{0}^{1,p}(\Omega).

Theorem 7.2. Suppose Ω\Omega is a bounded domain of class C1C^{1}. Then uH01,p(Ω)u\in H_{0}^{1,p}(\Omega) iff uH1,p(Ω)u\in H^{1,p}(\Omega) and TΩu0T_{\partial\Omega}u\equiv 0.

Proof. (\Rightarrow) Clearly uH1,p(Ω)u\in H^{1,p}(\Omega). Since u=limmumu=\lim_{m\rightarrow\infty}u_{m} in W1,p(Ω)W^{1,p}(\Omega) for {um}C01(Ω)\{u_{m}\}\subset C_{0}^{1}(\Omega) so that Tum0Tu_{m}\equiv 0, we see that TΩu=limmTΩum=0T_{\partial\Omega}u=\lim_{m\rightarrow\infty}T_{\partial\Omega}u_{m}=0, the limit being taken in Lp(Ω)L^{p}(\partial\Omega).

(\Leftarrow) Assume the same setup as the proof of Theorem. The assertion that TΩu0T_{\partial\Omega}u\equiv 0 is equivalent to the existence of {um}m=1C1(Ω)\{u_{m}\}_{m=1}^{\infty}\subset C^{1}(\overline{\Omega}) such that ummuu_{m}\xrightarrow{m\rightarrow \infty}u in W1,p(Ω)W^{1,p}(\Omega) and umΩm0\left.u_{m}\right|_{\partial\Omega}\xrightarrow{m\rightarrow\infty} 0 in Lp(Ω)L^{p}(\partial\Omega), which implies in particular that (ψium)Φxi1m(ψiu)Φxi1(\psi_{i}\cdot u_{m})\circ \Phi_{x_{i}}^{-1}\xrightarrow{m\rightarrow\infty}(\psi_{i}\cdot u)\circ \Phi_{x_{i}}^{-1} in W1,p(R+n)W^{1,p}(\mathbb{R}^{n}_{+}) and (ψium)Φxi1R+nm0\left.(\psi_{i}\cdot u_{m})\circ \Phi_{x_{i}}^{-1}\right|_{\partial\mathbb{R}^{n}_{+}}\xrightarrow{m\rightarrow\infty}0 in Lp(R+n)L^{p}(\partial\mathbb{R}^{n}_{+}). It therefore suffices to show that if vH1,p(R+n)v\in H^{1,p}(\mathbb{R}^{n}_{+}) is compactly supported in R+n\overline{\mathbb{R}^{n}_{+}} is such that Tv0Tv\equiv 0, then vH01,p(R+n)v\in H_{0}^{1,p}(\mathbb{R}^{n}_{+}).

Let {vm}C01(R+n)\{v_{m}\}\subset C_{0}^{1}(\overline{\mathbb{R}^{n}_{+}}) be such that vmvv_{m}\rightarrow v in W1,p(R+n)W^{1,p}(\mathbb{R}^{n}_{+}). We may assume that supp vmKR+n\supp v_{m}\subset K\Subset\overline{\mathbb{R}^{n}_{+}} for all mNm\in\mathbb{N} and a suitable compact set KK. For xR+nx\in\partial\mathbb{R}^{n}_{+} and xn0x^{n}\geq 0 we compute that

vm(x,xn)vm(x,0)+0xnvmxn(x,t)dt=Tvm(x)+0xnvmxn(x,t)dt|v_{m}(x,x^{n})|\leq |v_{m}(x,0)| +\int_{0}^{x^{n}}\left|\frac{\partial v_{m}}{\partial x^{n}}(x,t)\right|dt=|Tv_{m}(x)| + \int_{0}^{x^{n}}\left|\frac{\partial v_{m}}{\partial x^{n}}(x,t)\right|dt

so that by the elementary inequality (a+b)pC(ap+bp)(a+b)^{p}\leq C(a^{p} + b^{p}) and Hölder's inequality,

Rn1vm(x,xn)pdxC(p)(R+nTvmp+(xn)p1Rn1×[0,xn]nvmp).(*)\int_{\mathbb{R}^{n-1}}|v_{m}(x,x^{n})|^{p}dx \leq C(p)\left(\int_{\partial\mathbb{R}^{n}_{+}}|Tv_{m}|^{p} + (x^{n})^{p-1}\int_{\mathbb{R}^{n-1}\times [0,x^{n}]}|\partial_{n}v_{m}|^{p} \right).\tag{*}

Now fix a function χC0(R)\chi\in C_{0}^{\infty}(\mathbb{R}) with 0χ10\leq \chi\leq 1, χ[0,1]1\left.\chi\right|_{[0,1]}\equiv 1 and supp χ[0,2]\supp\chi\subset [0,2]. We claim that the function

vm(x,xn):=v(x,xn)(1χ(mxn)),v_{m}'(x,x^{n}):=v(x,x^{n})\cdot (1-\chi(mx^{n})),

whose support is contained in (Rn×[2m,[)supp vR+n\left(\mathbb{R}^{n} \times \left[\frac{2}{m},\infty\right[\right)\cap\supp v\Subset \mathbb{R}^{n}_{+} is an approximating sequence for vv; mollifying this sequence would then establish the claim. Now, it is clear that

R+nvmvp=KRn1×[0,2/m]χ(m1/pxn)pv(x)pdxm0,\int_{\mathbb{R}^{n}_{+}}|v_{m}'-v|^{p}=\int_{K\cap\mathbb{R}^{n-1}\times[0,2/m]}|\chi(m^{1/p}x^{n})|^{p}\cdot |v(x)|^{p}dx\xrightarrow{m\rightarrow\infty}0,

and similarly, ivmivpm0\int|\partial_{i}v_{m}'-\partial_{i}v|^{p}\xrightarrow{m\rightarrow\infty}0 for i<ni<n. For the nnth derivative, note that

R+nnvmnvp=KRn1×[0,2/m]χ(mxn)nv(x)+mv(x)χ(mxn)pC(p,χ)(KRn1×[0,2/m]χ(mxn)pnvp+mpKRn1×[0,2/m]v(x)p).\begin{aligned}\int_{\mathbb{R}^{n}_{+}}|\partial_{n}v_{m}'-\partial_{n}v|^{p}&=\int_{K\cap \mathbb{R}^{n-1}\times[0,2/m]}|\chi(mx^{n})\cdot \partial_{n}v(x) + mv(x)\cdot \chi'(mx^{n})|^{p}\\ &\leq C(p,\chi)\left(\int_{K\cap \mathbb{R}^{n-1}\times[0,2/m]}|\chi(mx^{n})|^{p}\cdot |\partial_{n}v|^{p} + m^{p}\int_{K\cap \mathbb{R}^{n-1}\times[0,2/m]}|v(x)|^{p} \right). \end{aligned}

Now, the first parenthetical term tends to 00 as mm\rightarrow\infty as before. To handle the latter term, we use (*):

mpKRn1×[0,2/m]v(x)p=limlmpKRn1×[0,2/m]vl(x)pC(p)liml(2mp1Tvlp+mp02/m(xn)p1Rn1×[0,xn]Dvlp).\begin{aligned} m^{p}\int_{K\cap \mathbb{R}^{n-1}\times[0,2/m]}|v(x)|^{p}&=\lim_{l\rightarrow\infty} m^{p}\int_{K\cap \mathbb{R}^{n-1}\times[0,2/m]}|v_{l}(x)|^{p}\\ &\leq C(p)\lim_{l\rightarrow\infty}\left( 2m^{p-1}||Tv_{l}||_{p} + m^{p}\int_{0}^{2/m}(x^{n})^{p-1} \int_{\mathbb{R}^{n-1}\times[0,x^{n}]}|\D v_{l}|^{p}\right). \end{aligned}

Since Tv=limlTvlTv=\lim_{l\rightarrow\infty}Tv_{l} in L2(R+n)L^{2}(\partial\mathbb{R}^{n}_{+}), the former parenthetical term tends to 00 as ll\rightarrow\infty. On the other hand, we may estimate the latter term from above by 2p/pRn1×[0,2/m]Dvlp2^{p}/p \cdot \int_{\mathbb{R}^{n-1}\times [0,2/m]}|\D v_{l}|^{p}, which tends to 2ppKRn1×[0,2/m]Dvp\frac{2^{p}}{p}\cdot \int_{K\cap \mathbb{R}^{n-1}\times [0,2/m]}|\D v|^{p} as ll\rightarrow\infty. Altogether,

mpKRn1×[0,2/m]v(x)pC(p)2ppKRn1×[0,2/m]Dvpm0.m^{p}\int_{K\cap \mathbb{R}^{n-1}\times[0,2/m]}|v(x)|^{p}\leq C(p)\cdot\frac{2^{p}}{p}\cdot \int_{K\cap\mathbb{R^{n-1}\times [0,2/m]}}|\D v|^{p}\xrightarrow{m\rightarrow\infty}0.

The spaces Hk,p(Ω)H^{-k,p}(\Omega)

In this section, we more explicitly describe the dual spaces to Sobolev spaces, focussing on the case of H0k,p(Ω)H^{k,p}_{0}(\Omega).

Throughout this section, we assume that p]1,[p\in\left]1,\infty\right[, q:=pp1q:=\frac{p}{p-1} and write N:=N(n,k)N:=N(n,k) for the number of multiïndices αZn\alpha\in\mathbb{Z}^{n} with αk|\alpha|\leq k. Clearly N(n,k)(k+1)nN(n,k)\leq (k+1)n.

Before describing the dual to H0k,p(Ω)H_{0}^{k,p}(\Omega), let {fα}αkLq(Ω)\{f_{\alpha}\}_{|\alpha|\leq k}\subset L^{q}(\Omega) and consider the linear mapping F:H0k,p(Ω)KF:H_{0}^{k,p}(\Omega)\rightarrow\mathbb{K} defined by

F(u)=αkΩfαDαu.(#)F(u)=\sum_{|\alpha|\leq k}\int_{\Omega}f_{\alpha}\cdot\D^{\alpha}u.\tag{\#}

This expression is guaranteed to be finite by Hölder's inequality; in fact,

F(u)αkΩfαDαuαkfαqDαup(αkfαqq)1/q(αkDαupp)1/p=uk,p|F(u)|\leq \sum_{|\alpha|\leq k}\int_{\Omega}|f_{\alpha}|\cdot|\D^{\alpha}u|\leq\sum_{|\alpha|\leq k}||f_{\alpha}||_{q}||\D^{\alpha}u||_{p}\leq \left(\sum_{|\alpha|\leq k}||f_{\alpha}||_{q}^{q} \right)^{1/q}\cdot \underbrace{\left(\sum_{|\alpha|\leq k}||\D^{\alpha}u||_{p}^{p} \right)^{1/p}}_{=||u||_{k,p}}

so that F(H0k,p(Ω))F\in\left(H_{0}^{k,p}(\Omega) \right)^{\ast}. This motivates the following definition.

Definition 7.3. The space Hk,q(Ω)(H0k,p(Ω))H^{-k,q}(\Omega)\subset(H^{k,p}_{0}(\Omega))^{\ast} is given by

H0k,q(Ω):={F(H0k,p(Ω)):{fα}αkLq(Ω) s.t. uH0k,p(Ω) F(u)=αkΩfαDαu}.H_{0}^{-k,q}(\Omega):=\{F\in (H_{0}^{k,p}(\Omega))^{\ast}: \exists \{f_{\alpha}\}_{|\alpha|\leq k}\subset L^{q}(\Omega)\ \textup{s.t.}\ \forall u\in H_{0}^{k,p}(\Omega)\ F(u)=\sum_{|\alpha|\leq k}\int_{\Omega}f_{\alpha}\cdot\D^{\alpha}u\}.

It turns out that linear functionals on H0k,p(Ω)H_{0}^{k,p}(\Omega) of the form (#) are actually the most general ones.

Theorem 7.4. (H0k,p(Ω))=Hk,p(Ω)(H_{0}^{k,p}(\Omega))^{\ast}=H^{-k,p}(\Omega), i.e. for any F(H0k,p(Ω))F\in (H_{0}^{k,p}(\Omega))^{\ast}, there exist {fα}αkLq(Ω)\{f_{\alpha}\}_{|\alpha|\leq k}\subset L^{q}(\Omega) such that for all uu,

F(u)=αkΩfαDαuF(u)=\sum_{|\alpha|\leq k}\int_{\Omega}f_{\alpha}\cdot\D^{\alpha}u

and F=(αkΩfαq)1/q||F||=\left(\sum_{|\alpha|\leq k}\int_{\Omega}|f_{\alpha}|^{q} \right)^{1/q}.

Before proving this theorem, we recall the following fundamental result from functional analysis, which says that we can always extend continuous linear functionals in such a way as to preserve their norm.

Theorem 7.5 (Hahn-Banach). If XX is a Banach space, UXU\subset X a linear subspace and φU\varphi\in U^{\ast}, then there exists a φX\varphi'\in X^{\ast} such that φUφ\left.\varphi'\right|_{U}\equiv \varphi and φX=φU||\varphi'||_{X^{\ast}}=||\varphi||_{U^{\ast}}.

We shall also make use of the normed space ((Lp(Ω))N,p)((L^{p}(\Omega))^{N},||\cdot||_{p}) with norm given by

(f1,,fN):=(i=1NΩfip)1/p.||(f_{1},\dots,f_{N})||:=\left(\sum_{i=1}^{N}\int_{\Omega}|f_{i}|^{p} \right)^{1/p}.

It is straightforward to check that (Lp(Ω))N(L^{p}(\Omega))^{N} is a Banach space. We also note the following lemma.

Lemma 7.6. (Lp(Ω)N)(Lq(Ω))N\left(L^{p}(\Omega)^{N} \right)^{\ast}\simeq (L^{q}(\Omega))^{N}, i.e. if G((Lp(Ω))N)G\in \left((L^{p}(\Omega))^{N}\right)^{\ast}, then there exist unique g1,,gNLq(Ω)g_{1},\dots,g_{N}\in L^{q}(\Omega) such that for all u=(u1,,uN)(Lp(Ω))Nu=(u_{1},\dots,u_{N})\in (L^{p}(\Omega))^{N},

G(u)=i=1NΩgiuiG(u)=\sum_{i=1}^{N}\int_{\Omega}g_{i}u_{i}

and G=(g1,,gN)q||G||=||(g_{1},\dots,g_{N})||_{q}.

Proof. Let G(Lp(Ω)N)G\in \left(L^{p}(\Omega)^{N}\right)^{\ast} and note that for any uLp(Ω)Nu\in L^{p}(\Omega)^{N},

G(u)=G(u1,0,,0)+G(0,u2,0,,0)++G(0,,0,uN).G(u)=G(u_{1},0,\dots,0) + G(0,u_{2},0,\dots,0)+\dots + G(0,\dots,0,u_{N}).

Note that for each i{1,,n}i\in\{1,\dots,n\}, Lp(Ω)uiG(,ui,)KL^{p}(\Omega)\ni u_{i}\mapsto G(\dots,u_{i},\dots)\in\mathbb{K} is continuous so that by the canonical isomorphism Lp(Ω)Lq(Ω)L^{p}(\Omega)^{\ast}\simeq L^{q}(\Omega), there exists a unique giLq(Ω)g_{i}\in L^{q}(\Omega) such that for all uiLp(Ω)u_{i}\in L^{p}(\Omega),

G(,ui,)=Ωgiui,G(\dots,u_{i},\dots)=\int_{\Omega}g_{i}u_{i},

i.e. G(u)=i=1NΩgiuiG(u)=\sum_{i=1}^{N}\int_{\Omega}g_{i}u_{i}. By the same computation employed in the discussion above, we see that G(g1,,gN)q||G||\leq ||(g_{1},\dots,g_{N})||_{q}. To see that equality holds, choose uu such that

ui(x)={0,xgi1({0})gqq/pgˉigiq2,otherwise.u_{i}(x)=\begin{cases}0,& x\in g_{i}^{-1}(\{0\})\\ ||g||_{q}^{-q/p} \bar{g}_{i}\cdot |g_{i}|^{q-2},&\textup{otherwise} \end{cases}.

Since this function is measurable and (Ωuip)1/p=gqq/p(Ωgip(q1))1/p=gqq/pgiqq/p<(\int_{\Omega}|u_{i}|^{p})^{1/p}=||g||^{-q/p}_{q}(\int_{\Omega}|g_{i}|^{p(q-1)})^{1/p} =||g||_{q}^{-q/p}||g_{i}||_{q}^{q/p}< \infty, uiLp(Ω)u_{i}\in L^{p}(\Omega) and we compute that

up=(i=1Nuipp)1/p=gqq/p(i=1Ngiqq)1/p=1||u||_{p}=\left(\sum_{i=1}^{N}||u_{i}||_{p}^{p} \right)^{1/p}=||g||_{q}^{-q/p}\cdot\left(\sum_{i=1}^{N}||g_{i}||_{q}^{q} \right)^{1/p}=1

and we have that

G(u)=gqq/pi=1NΩgiq=gqq(11/p)=gq,G(u)=||g||_{q}^{-q/p}\sum_{i=1}^{N}\int_{\Omega}|g_{i}|^{q}=||g||_{q}^{q(1-1/p)}=||g||_{q},

whence G=gq||G||=||g||_{q}

Proof of Theorem 7.4. Consider the linear mapping ι:H0k,p(Ω)Lp(Ω)N\iota:H_{0}^{k,p}(\Omega)\rightarrow L^{p}(\Omega)^{N} defined by

ι(u)=(Dαu)αk,\iota(u)=(\D^{\alpha}u)_{|\alpha|\leq k},

where we assume that the set {αk}\{\alpha\leq k\} is ordered in some manner. Note that ι\iota is injective and ι(u)p=uk,p||\iota(u)||_{p}=||u||_{k,p}, i.e. it is an isometry.

Now suppose FH0k,p(Ω)F\in H_{0}^{k,p}(\Omega)^{\ast}, set U:=im ιU:=\textup{im}\ \iota and define F:UKF':U\rightarrow\mathbb{K} by F(ι(u))=F(u)F'(\iota(u))=F(u). FF' is clearly an element of UU^{\ast}, since

FU=sup{F(ι(u)):ι(u)p=1}=sup{F(u):uk,p=1}=FH0k,p(Ω).||F'||_{U^{\ast}}=\sup\{|F'(\iota(u))|: ||\iota(u)||_{p}=1\}=\sup\{|F(u)|:||u||_{k,p}=1\}=||F||_{H_{0}^{k,p}(\Omega)^{\ast}}.

By the Hahn-Banach theorem, FF' may be extended to all of Lp(Ω)NL^{p}(\Omega)^{N} in such a way that F(Lp(Ω)N)=FH0k,p(Ω)||F'||_{(L^{p}(\Omega)^{N})^{\ast}}=||F||_{H_{0}^{k,p}(\Omega)^{\ast}}, and by Lemma , there exists an f=(fα)αkLq(Ω)Nf=(f_{\alpha})_{|\alpha|\leq k}\in L^{q}(\Omega)^{N} such that F(Lp(Ω)N)=fq||F'||_{(L^{p}(\Omega)^{N})^{\ast}}=||f||_{q} and for all v=(vα)αkLp(Ω)Nv=(v_{\alpha})_{|\alpha|\leq k}\in L^{p}(\Omega)^{N},

F(v)=αkΩfαvα;F'(v)=\sum_{|\alpha|\leq k}\int_{\Omega}f_{\alpha}v_{\alpha};

in particular,

F(u)=F(ι(u))=αkΩfαDαu.F(u)=F'(\iota(u))=\sum_{|\alpha|\leq k}\int_{\Omega}f_{\alpha}\cdot\D^{\alpha}u.

Remark 7.7. An inspection of the above considerations shows that we have not made essential use of the fact that we are dealing with H0k,p(Ω)H_{0}^{k,p}(\Omega) rather than Wk,p(Ω)W^{k,p}(\Omega); in particular, we have the same characterisation of Wk,p(Ω)W^{k,p}(\Omega)^{\ast} in terms of Lq(Ω)NL^{q}(\Omega)^{N}.

Elliptic equations

We now turn our attention to elliptic partial differential equations.

Definition 7.8. A linear second order elliptic operator is an expression of the form

L:=i,j=1naijij+i=1nbii+c,L:=-\sum_{i,j=1}^{n}a_{ij}\partial_{i}\partial_{j} + \sum_{i=1}^{n}b^{i}\partial_{i} + c,

where (aij)i,j=1n(a_{ij})_{i,j=1}^{n} is a symmetric positive-definite matrix, and aij,bi,c:ΩKa_{ij},b^{i},c:\Omega\rightarrow \mathbb{K}. We say that LL is uniformly elliptic if there exists a constant θ>0\theta>0 such that for all v=(v1,,vn)Rn\{0}v=(v^{1},\dots,v^{n})\in\mathbb{R}^{n}\backslash\{0\} and xΩx\in\Omega,

i,j=1naij(x)vivjθv2.\sum_{i,j=1}^{n}a_{ij}(x)v^{i}v^{j}\geq \theta |v|^{2}.

Remark 7.9. We say that LL is in divergence form if for all uC2(Ω)u\in C^{2}(\Omega), LuLu may be written in the form

Lu=i,j=1ni(aijju)+i=1nbiiu+cu,Lu=-\sum_{i,j=1}^{n}\partial_{i}(a_{ij}\partial_{j}u) + \sum_{i=1}^{n}b^{i}\partial_{i}u + cu,

where (aij)i,j=1n(a_{ij})_{i,j=1}^{n} has the same properties as before.

Given a second-order elliptic operator LL as above and functions f:ΩKf:\Omega\rightarrow\mathbb{K} and g:ΩKg:\partial\Omega\rightarrow\mathbb{K}, we will be interested in the question of whether there is a solution u:ΩKu:\Omega\rightarrow\mathbb{K} to the elliptic boundary value problem

Lu=f on Ωu=g on Ω\begin{aligned}Lu&=f\ \textup{on }\Omega\\ u&=g\ \textup{on }\partial\Omega\end{aligned}

and how smooth uu is expected to be given appropriate smoothness conditions on ff and gg. We call such a boundary-value problem the Dirichlet problem associated with LL.

Solutions to the Dirichlet problem associated with an elliptic operator in divergence form typically arise as minimisiers or critical points of energy functionals defined on suitable spaces of functions. The following lemma illustrates this. We assume that all functions are real-valued.

Lemma 7.10. Suppose (aij)i,j=1n(a_{ij})_{i,j=1}^{n} is a positive-definite, symmetric matrix, aijC1(Ω)a_{ij}\in C^{1}(\Omega), c,fC0(Ω)c,f \in C^{0}(\Omega) and gC0(Ω)g\in C^{0}(\partial\Omega). Define the energy functional

E(u)=12Ωi,j=1naijiuju+cu2Ωfu.E(u)=\frac{1}{2}\int_{\Omega}\sum_{i,j=1}^{n}a_{ij}\partial_{i}u\partial_{j}u+ cu^{2} -\int_{\Omega}fu.

If uC2(Ω)u\in C^{2}(\overline\Omega) is a minimiser of EE amongst all functions vC2(Ω)v\in C^{2}(\overline{\Omega}) with vΩg\left.v\right|_{\partial\Omega}\equiv g, i.e. uΩg\left.u\right|_{\partial\Omega}\equiv g and E(u)E(v)E(u)\leq E(v) for all such vv, then uu solves the following Dirichlet problem:

i,j=1ni(aijju)+cu=f on ΩuΩ=g(**)\begin{aligned}-\sum_{i,j=1}^{n}\partial_{i}(a_{ij}\partial_{j}u) + c\cdot u &= f\ \textup{on }\Omega\\\left.u\right|_{\partial\Omega}&=g \end{aligned}\tag{**}

Proof. Let φC0(Ω)\varphi\in C_{0}^{\infty}(\Omega). The minimisation condition implies that for all tRt\in\mathbb{R}, E(u+tφ)E(u)E(u+t\varphi)\leq E(u), i.e. tE(u+tφ)t\mapsto E(u+t\varphi) attains its minimum at t=0t=0. In particular,

E(u+tφ)=E(u)+t(Ωi,j=1naijiujφ+cuφfφ)+t2(12Ωi,j=1naijiφjφ+cφ2).E(u+t\varphi) = E(u) +t\left(\int_{\Omega}\sum_{i,j=1}^{n}a_{ij}\partial_{i}u\partial_{j}\varphi + cu\varphi - f\varphi\right) + t^{2}\cdot \left(\frac{1}{2}\int_{\Omega}\sum_{i,j=1}^{n}a_{ij}\partial_{i}\varphi\partial_{j}\varphi + c\varphi^{2} \right).

Therefore, tE(u+tφ)t\mapsto E(u+t\varphi) is smooth and we may set its first derivative at t=0t=0 to 00:

0=ddtt=0E(u+tφ)Ωi,j=1naijiujφ+cuφ=Ωfφ.(***)0=\left.\frac{d}{d t}\right|_{t=0}E(u+t\varphi) \Leftrightarrow \int_{\Omega}\sum_{i,j=1}^{n}a_{ij}\partial_{i}u\partial_{j}\varphi + cu\varphi= \int_{\Omega}f\varphi.\tag{***}

Integrating by parts yields the equation

Ω(i,j=1ni(ju)+cu)φ=Ωfφ,\int_{\Omega}\left(\sum_{i,j=1}^{n}\partial_{i}\left( \partial_{j}u\right) + cu\right)\varphi = \int_{\Omega} f\varphi,

which holds for all φC0(Ω)\varphi\in C_{0}^{\infty}(\Omega), immediately implying

Remark 7.11. Note that if aij,cL(Ω)a_{ij},c\in L^{\infty}(\Omega), then E(u)E(u) is also defined for uW1,2(Ω)u\in W^{1,2}(\Omega), as is the intermediate equation (***). We say that (***) is the weak formulation of (**) and call the minimisation posed in Lemma the variational formulation of (**).