Week 8: Existence of weak solutions

We now turn our attention to the notion of a weak solution to a (divergence-form) elliptic PDE. We will assume for simplicity that all functions considered are real-valued.

Weak solutions to divergence-form elliptic equations via Lax-Milgram

Our goal will be to establish the existence of solutions to the following Dirichlet problem for u:ΩRu:\overline\Omega\rightarrow\mathbb{R}:

Lu:=i,j=1ni(aijju)+i=1nbiiu+cu=f on ΩuΩ=0.(*)\begin{aligned}Lu:=-\sum_{i,j=1}^{n}\partial_{i}(a_{ij}\partial_{j}u) + \sum_{i=1}^{n}b^{i}\partial_{i}u + cu&=f\ \textup{on }\Omega\\ \left.u\right|_{\partial\Omega}&=0.\end{aligned}\tag{*}

We will first consider the so-called weak formulation of this problem; to this end, assume the following setup throughout this lecture:

Note that if uu is twice differentiable and satisfies the equation Lu=fLu=f, then multiplying by a function φC0(Ω)\varphi\in C_{0}^{\infty}(\Omega) and integrating the leading order term by parts, we end up with the equation

Ωi,j=1naijiujφ+i=1nbiiuφ+cuφ=Ωfφ.(**)\int_{\Omega}\sum_{i,j=1}^{n}a_{ij}\partial_{i}u\cdot\partial_{j}\varphi + \sum_{i=1}^{n}b^{i}\partial_{i}u\cdot\varphi + cu\cdot \varphi=\int_{\Omega}f\cdot \varphi.\tag{**}

Definition 8.1. A function uH01,2(Ω)u\in H^{1,2}_{0}(\Omega) is said to be a weak solution to the boundary-value problem (*) if for all φC0(Ω)\varphi\in C_{0}^{\infty}(\Omega), the equation (**) holds.

Remark 8.2. We may more generally consider the boundary-value problem

Lu:=i,j=1ni(aijju)+i=1nbiiu+cu=f on ΩTΩu=g,(*)\begin{aligned}Lu:=-\sum_{i,j=1}^{n}\partial_{i}(a_{ij}\partial_{j}u) + \sum_{i=1}^{n}b^{i}\partial_{i}u + cu&=f\ \textup{on }\Omega\\ T_{\partial\Omega}u&=g,\end{aligned}\tag{*}

where Ω\Omega is a bounded domain of class C1C^{1} and gTΩ(H1,2(Ω))g\in T_{\partial\Omega}(H^{1,2}(\Omega)), i.e. the equation (**) holds for all φC0(Ω)\varphi\in C_{0}^{\infty}(\Omega) and g=TΩgg=T_{\partial\Omega}g' for some gH1,2(Ω)g'\in H^{1,2}(\Omega). By considering u:=ugu':=u-g' so that uH01,2(Ω)u'\in H_{0}^{1,2}(\Omega), we then see that

Ωi,j=1naijiujφ+i=1nbiiuφ=Ω(f+i=1nbiig)φ+i,j=1naijigjφ.\int_{\Omega}\sum_{i,j=1}^{n}a_{ij}\partial_{i}u\cdot \partial_{j}\varphi + \sum_{i=1}^{n}b^{i}\partial_{i}u\cdot \varphi = \int_{\Omega}(f+ \sum_{i=1}^{n}b^{i}\partial_{i}g')\varphi + \sum_{i,j=1}^{n}a_{ij}\partial_{i}g'\cdot \partial_{j}\varphi.

If gg' may be taken to be in C2(Ω)C^{2}(\overline\Omega), then the right-hand side may be written in the form of the right-hand side of (**) and we have reduced the case of general boundary values to that of zero boundary values. More generally, the right-hand side is actually an element of H01,2(Ω)H_{0}^{-1,2}(\Omega), considered as a function of φ\varphi. We will discuss this version of (*) in our investigations.

Note that if (**) holds for all φC0(Ω)\varphi\in C_{0}^{\infty}(\Omega), then by approximation it also holds for φH01,2(Ω)\varphi\in H_{0}^{1,2}(\Omega). Moreover, if we let

BL(u,φ):=Ωi,j=1naijiujφ+i=1nbiiuφ+cuφB_{L}(u,\varphi):=\int_{\Omega}\sum_{i,j=1}^{n}a_{ij}\partial_{i}u\cdot\partial_{j}\varphi + \sum_{i=1}^{n}b^{i}\partial_{i}u\cdot\varphi + cu\cdot \varphi

and F(φ):=ΩfφF(\varphi):=\int_{\Omega}f\cdot \varphi, then we may abbreviate (**) as finding a uH01,2(Ω)u\in H_{0}^{1,2}(\Omega) such that for all φH01,2(Ω)\varphi\in H_{0}^{1,2}(\Omega),

BL(u,φ)=F(φ).(**)’B_{L}(u,\varphi)=F(\varphi).\tag*{(**)'}

The mapping B:H01,2(Ω)×H01,2(Ω)RB:H_{0}^{1,2}(\Omega)\times H_{0}^{1,2}(\Omega)\rightarrow\mathbb{R} is called the bilinear form associated to LL. As it turns out, there is a general functional-analytic principle that allows us to treat equations of the form (**)' under suitable assumptions on BB.

Theorem 8.3 (Lax-Milgram). Suppose XX is a Hilbert space, FXF\in X^{\ast} and B:X×XKB:X\times X\rightarrow\mathbb{K} is a bilinear form with the following properties:

Then there exists a unique x0Xx_{0}\in X satisfying the equation

B(x0,y)=F(y)(**)B(x_{0},y)=F(y)\tag{**}

for all yXy\in X.

Proof. Note that uniqueness immediately follows from coërcivity and bilinearity: If x0x_{0} and x0x_{0}' solve (**), then for all yXy\in X, B(x0x0,y)=0B(x_{0}-x_{0}',y)=0 so that

x0x0C11B(x0x0,x0x0)=0x0=x0.||x_{0}-x_{0}'||\leq C_{1}^{-1}\Re B(x_{0}-x_{0}',x_{0}-x_{0}')=0\Rightarrow x_{0}=x_{0}'.

As for existence, let

X:={xX:χX s.t. yX <x,y>=B(χ,y)}\underline{X}:=\{\underline{x}\in X:\exists\chi\in X\ \textup{s.t.}\ \forall y\in X\ \left<\underline{x},y\right>=B(\chi,y)\}

We will show that X=X\underline{X}=X. First note that (X,<,>)(\underline{X},\left<\cdot,\cdot\right>) is a Hilbert space:

Now suppose xXx\in X, which implies that (Xz<x,z>)(X)\left(\underline{X}\ni\underline{z}\mapsto\left<x,\underline{z}\right>\right)\in (\underline{X})^{\ast}, whence we may find an xX\underline{x}\in \underline{X} such that for all zX\underline{z}\in\underline{X},

<x,z>=<x,z><xx,z>=0.\left<\underline{x},\underline{z}\right>=\left<x,\underline{z}\right>\Leftrightarrow\left<x-\underline{x},\underline{z}\right>=0.

Since yB(xx,y)y\mapsto B(x-\underline{x},y) is in XX^{\ast}, we may find an x0Xx_{0}\in X such that <x0,y>=B(xx,y)\left<x_{0},y\right>=B(x-\underline{x},y) for all yXy\in X, i.e. x0Xx_{0}\in\underline{X}, which implies that

0=<x0,xx>=B(xx,xx)C1xx2,0=\Re\left<x_{0},x-\underline{x}\right>=\Re B(x-\underline{x},x-\underline{x})\geq C_{1}||x-\underline{x}||^{2},

i.e. x=xx=\underline{x} so that xXX=Xx\in \underline{X}\Rightarrow \underline{X}=X. Since XX is a Hilbert space, the Riesz representation theorem yields that every element FXF\in X^{\ast} is of the form <x,>\left<\underline{x},\cdot\right> for some xX\underline{x}\in X, which establishes the claim.

We now establish some estimates on the bilinear form associated to LL with the goal of applying the Lax-Milgram theorem.

Lemma 8.4 (energy estimates). Suppose BLB_{L} is the bilinear form associated to LL. There exist constants C0,C1>0C_{0},C_{1}>0 and C2>0C_{2}>0 such that for all u,vH01,2(Ω)u,v\in H_{0}^{1,2}(\Omega),

BL(u,v)C0u1,2v1,2|B_{L}(u,v)|\leq C_{0} ||u||_{1,2}\cdot ||v||_{1,2}

and

BL(u,u)+C2u22C1u1,22.B_{L}(u,u) + C_{2} ||u||_{2}^{2}\geq C_{1}||u||_{1,2}^{2}.

Proof. First note that by the triangle inequality and Hölder's inequality,

BL(u,v)=Ωaijiujv+biiuv+cuvΩaijiujv+biiuv+cuvΛΩDuDv+βΩDuv+γΩuv(Λ+β+γ)u1,2v1,2,\begin{aligned}|B_{L}(u,v)|=\left|\int_{\Omega}a_{ij}\partial^{i}u\cdot \partial^{j}v + b^{i}\partial_{i}u\cdot v + cu\cdot v \right|&\leq \int_{\Omega}|a_{ij}\partial^{i}u\cdot \partial^{j}v| + |b^{i}\cdot \partial_{i}u|\cdot |v| + |c|\cdot |u|\cdot |v|\\&\leq \Lambda\int_{\Omega}|\D u|\cdot |\D v| + \beta \int_{\Omega}|\D u|\cdot |v| + \gamma\int_{\Omega}|u|\cdot |v|\\ &\leq(\Lambda + \beta + \gamma)||u||_{1,2}\cdot ||v||_{1,2},\end{aligned}

As for the other estimate, we again make use of the bounds on the various coëfficients of LL to deduce that

BL(u,u)λ0ΩDu2βΩDuuγΩu2,B_{L}(u,u)\geq \lambda_{0} \int_{\Omega} |\D u|^{2} - \beta \int_{\Omega}|\D u|\cdot |u| - \gamma\int_{\Omega}|u|^{2},

or written more suggestively,

BL(u,u)+βΩDuu+γΩu2λ0ΩDu2.B_{L}(u,u) + \beta \int_{\Omega}|\D u|\cdot |u| + \gamma\int_{\Omega}|u|^{2} \geq \lambda_{0} \int_{\Omega}|\D u|^{2}.

We now apply the Peter-Paul inequality to the second integrand on the left-hand side, choosing ε=λ02β\eps=\frac{\lambda_{0}}{2\beta} so that

BL(u,u)+(β22λ0+γ)Ωu2λ02ΩDu2λ04min{1,CPoinc1}u1,22,B_{L}(u,u)+ \left(\frac{\beta^{2}}{2\lambda_{0}} + \gamma\right)\int_{\Omega}|u|^{2}\geq \frac{\lambda_{0}}{2}\int_{\Omega}|\D u|^{2} \geq \frac{\lambda_{0}}{4}\min\{1,C_{\textup{Poinc}}^{-1}\}||u||_{1,2}^{2},

where CPoincC_{\textup{Poinc}} is the constant appearing in the Poincaré inequality for uH01,2(Ω)u\in H_{0}^{1,2}(\Omega). This establishes the claim.

As may be gleaned from this lemma, BLB_{L} is almost coërcive, save for the constant C2C_{2} getting in the way. However, we can still use Lax-Milgram to solve a slightly modified version of our problem.

Theorem 8.5 (first existence theorem). There exists a constant C0C\geq 0 such that whenever μC\mu\geq C, there exists a unique weak solution to the Dirichlet problem

Lu+μu=f on ΩuΩ=0.\begin{aligned} Lu+\mu u &= f\ \textup{on }\Omega\\ \left.u\right|_{\partial\Omega}&=0. \end{aligned}

Proof. Let BL+μIB_{L+\mu I} be the bilinear form corresponding to the elliptic operator L+μIL+\mu I and BLB_{L} that corresponding to LL. For all u,vH01,2(Ω)u,v\in H_{0}^{1,2}(\Omega), we have that

BL+μI(u,v)=BL(u,v)+μΩuv. B_{L+\mu I}(u,v)=B_{L}(u,v) + \mu\int_{\Omega}u\cdot v.

This bilinear form is bounded, since by Hölder's inequality and Lemma 8.4,

BL+μI(u,v)C0u1,2v1,2+μu2v2(C0+μ)u1,2v1,2.|B_{L+\mu I}(u,v)|\leq C_{0}||u||_{1,2}||v||_{1,2} + \mu ||u||_{2}||v||_{2}\leq (C_{0}+\mu)||u||_{1,2}||v||_{1,2}.

On the other hand, we compute using Lemma 8.4 that

BL+μI(u,u)=BL(u,u)+μu22C1u1,22+(μC2)u22C1u1,22B_{L+\mu I}(u,u)=B_{L}(u,u) + \mu ||u||_{2}^{2}\geq C_{1}||u||_{1,2}^{2} + (\mu-C_{2})||u||_{2}^{2}\geq C_{1}||u||_{1,2}^{2}

provided μC:=C2\mu\geq C:=C_{2}. Since the linear mapping H01,2(Ω)vΩfvH_{0}^{1,2}(\Omega)\ni v\mapsto \int_{\Omega}f\cdot v is continuous, Lax-Milgram implies that there exists a unique uH01,2(Ω)u\in H_{0}^{1,2}(\Omega) such that for all vH01,2(Ω)v\in H_{0}^{1,2}(\Omega),

BL+μI(u,v)=Ωfv,B_{L+\mu I}(u,v)=\int_{\Omega}f\cdot v,

i.e. there exists a unique weak solution to the aforementioned Dirichlet problem.

Remark 8.6. The proof of the first existence theorem actually gives us a bit more: Given any FH01,2(Ω)F\in H_{0}^{-1,2}(\Omega), there exists a unique solution uu to the equation BL+μI(u,v)=F(v)B_{L+\mu I}(u,v)=F(v) for all vH01,2(Ω)v\in H_{0}^{1,2}(\Omega). We formally say that such a uu solves the equation Lu+μu=FLu +\mu u=F weakly. Using coërcivity, we also note that such a solution satisfies an estimate of the form

u1,2const(λ0,CPoinc)F.||u||_{1,2}\leq \textup{const}(\lambda_{0},C_{\textup{Poinc}})\cdot ||F||.

Remark 8.7. In light of the first existence theorem and the preceding remark, we see that the mapping H01,2(Ω)uB(u,)H01,2(Ω)H_{0}^{1,2}(\Omega)\ni u\mapsto B(u,\cdot)\in H_{0}^{-1,2}(\Omega) is an isomorphism. We formally express this by saying that L+μI:H01,2(Ω)H01,2(Ω)L+\mu I:H_{0}^{1,2}(\Omega)\rightarrow H_{0}^{-1,2}(\Omega) is an isomorphism.

Remark 8.8. From the above proofs, we immediately see that if bi0b^{i}\equiv 0 and c0c\geq 0, then the Dirichlet problem corresponding to L:=i,j=1naijij+cL:=-\sum_{i,j=1}^{n}a_{ij}\partial_{i}\partial_{j} + c admits a unique weak solution, since in this case C2=0C_{2}=0. This includes in particular the operator L=ΔL=-\Delta.

Existence via Fredholm Alternative

To get a clearer picture of what gets in the way of the existence and uniqueness of solutions to Lu=fLu=f, we employ the so-called Fredholm alternative from functional analysis.

Recall that if XX is a Hilbert space, DXD\subset X is a dense subspace, and L:DXL:D\rightarrow X is a linear mapping, the adjoint of LL is the unique mapping L:DXL^{\ast}:D'\rightarrow X such that

Note that LL is not necessarily continuous (if it were, then LL could be uniquely extended to all of XX).

Theorem 8.9 (Fredholm alternative). Suppose XX is a Hilbert space and K:XXK:X\rightarrow X is compact, i.e. if {xi}i=1\{x_{i}\}_{i=1}^{\infty} is a bounded sequence, then {Kxi}i=1\{Kx_{i}\}_{i=1}^{\infty} has a convergent subsequence. Either one of the following alternatives holds:

We now reformulate the Dirichlet problem so as to make use of the Fredholm alternative. Suppose uH01,2(Ω)u\in H_{0}^{1,2}(\Omega) solves Lu=fLu=f on Ω\Omega (in the weak sense), where fL2(Ω)f\in L^{2}(\Omega), assume μ0\mu\geq 0 is as in the first existence theorem and set Lμ:=L+μIL_{\mu}:=L+\mu I, which by the first existence theorem and subsequent remarks is an isomorphism H01,2(Ω)H01,2(Ω)H_{0}^{1,2}(\Omega)\rightarrow H_{0}^{-1,2}(\Omega). Noting that L=LμμIL=L_{\mu}-\mu I, we see that

Lu=f(LμμI)u=f(IμLμ)u=Lμ1f.Lu=f\Leftrightarrow (L_{\mu} - \mu I)u = f\Leftrightarrow (I-\mu L_{\mu})u=L_{\mu}^{-1}f.

Setting K:=μLμ1K:=\mu L_{\mu}^{-1}, we also note that if uL2(Ω)u\in L^{2}(\Omega) satisfies (IK)u=μ1Kf(I-K)u=\mu^{-1}Kf, then u=Ku+μ1KfH01,2(Ω)u= Ku + \mu^{-1}Kf\in H_{0}^{1,2}(\Omega) so that by reversing the steps above, Lu=fLu=f in the weak sense. Moreover, the mapping K:L2(Ω)H01,2(Ω)L2(Ω)K:L^{2}(\Omega)\rightarrow H_{0}^{1,2}(\Omega)\subset L^{2}(\Omega) is compact, since by Remark 8.6, if {fi}L2(Ω)\{f_{i}\}\subset L^{2}(\Omega) is a bounded sequence, then {Kfi}\{Kf_{i} \} is bounded by the continuity of KK (as a mapping into H01,2(Ω)H_{0}^{1,2}(\Omega)), but then Rellich-Kondrakov implies that {Kfi}\{K f_{i}\} has a subsequence converging in L2(Ω)L^{2}(\Omega), which establishes the claim. Finally, to fully leverage the Fredholm alternative, we will need a more explicit description of KK^{\ast}. We first define some useful notions.

Definition 8.10. If biC1(Ω)b^{i}\in C^{1}(\overline{\Omega}), the elliptic operator LL^{\ast} defined by

Lφ=i,j=1ni(aijjφ)i=1nbiiφ+(cdiv b)φL^{\ast}\varphi=-\sum_{i,j=1}^{n}\partial_{i}(a_{ij}\partial_{j}\varphi)-\sum_{i=1}^{n}b^{i}\partial_{i}\varphi + (c-\textup{div}\ b)\varphi

is called the formal adjoint of LL. More generally, we define the adjoint bilinear form BL:H01,2(Ω)×H01,2(Ω)RB_{L^{\ast}}:H_{0}^{1,2}(\Omega)\times H_{0}^{1,2}(\Omega)\rightarrow \mathbb{R} such that

(v,u)BL(v,u)=BL(u,v).(v,u)\mapsto B_{L^\ast}(v,u)=B_{L}(u,v).

Finally, if FH01,2(Ω)F\in H_{0}^{-1,2}(\Omega), we say that vH01,2(Ω)v\in H_{0}^{1,2}(\Omega) is a weak solution of the adjoint problem

Lv=F on ΩvΩ=0\begin{aligned} L^{\ast}v&=F\ \textup{on }\Omega\\ \left.v\right|_{\partial\Omega}&=0\end{aligned}

if for all uH01,2(Ω)u\in H_{0}^{1,2}(\Omega), BL(v,u)=F(u)B_{L^{\ast}}(v,u) = F(u).

Remark 8.11. If aij,bC1(Ω)a_{ij},b\in C^{1}(\overline\Omega) and u,vC0(Ω)u,v\in C_{0}^{\infty}(\Omega), we see that BL(u,v)=<Lu,v>=<u,Lv>=BL(v,u)B_{L}(u,v)=\left<Lu,v\right>=\left<u,L^{\ast}v\right>=B_{L^{\ast}}(v,u).

As before, we formally write LL^{\ast} for the mapping H01,2(Ω)H01,2(Ω)H_{0}^{1,2}(\Omega)\rightarrow H_{0}^{-1,2}(\Omega) such that v(uBL(v,u))v\mapsto (u\mapsto B_{L^{\ast}}(v,u)). Since BLB_{L^{\ast}} satisfies the same estimates as BLB_{L}, we see that Lμ=(L+μI):H01,2(Ω)H01,2(Ω)L_{\mu}^{\ast}=(L^{\ast}+\mu I):H_{0}^{1,2}(\Omega)\rightarrow H_{0}^{-1,2}(\Omega) is also an isomorphism, and a quick calculation shows that the adjoint of KK defined before is given by

K=μ(Lμ)1.K^{\ast}=\mu (L_{\mu}^{\ast})^{-1}.

In particular, ΦL2(Ω)\Phi\in L^{2}(\Omega) solves (##)' iff

Φμ(Lμ)1Φ=0LμΦμΦ=0LΦ=0,\Phi-\mu(L_{\mu}^{\ast})^{-1}\Phi = 0 \Leftrightarrow L_{\mu}^{\ast}\Phi - \mu\Phi=0\Leftrightarrow L^{\ast}\Phi=0,

i.e. iff Φ\Phi solves the adjoint problem.

Finally, if Φ\Phi solves (##)', then for fL2(Ω)f\in L^{2}(\Omega),

<Φ,Lμ1f>=0μ1<Φ,Kf>=0<KΦ,f>=0<Φ,f>=0.\left<\Phi,L_{\mu}^{-1}f\right>=0\Leftrightarrow\mu^{-1}\left<\Phi,K f\right>=0\Leftrightarrow \left<K^{\ast}\Phi,f\right>=0\Leftrightarrow \left<\Phi,f\right>=0.

Altogether, the Fredholm alternative yields the following existence theorem:

Theorem 8.12 (second existence theorem). One of the following statements is true: