Geometric Analysis at the Freie Universit? Berlin

Lectures and Seminars for Graduate and Undergraduate Students
Sommer Semester 2009

IMPRS

The International Max-Planck Research School for Geometric Analysis, Gravitation and String Theory is a joint project of the Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Freie Universität Berlin (Institute for Mathematics) and Universität Potsdam.
The IMPRS aims to promote research in mathematical physics in an area related in the widest sense to Einstein's theory of general relativity, ranging from pure mathematics (differential geometry and the theory of partial differential equations) to the physics of black holes, gravitational waves and cosmological applications of Einstein's theory and all the way to the most recent efforts to reconcile Einstein's theory with quantum mechanics in the framework of superstring theory and M theory.
Our following seminars are recommended for post-graduates of the IMPRS:
- - Diplomanden- und Doktorandenseminar
- - Oberseminar Analysis, Geometrie und Physik.

Seminars

S-19144 Seminar für Diplomanden und Doktoranden (Schnürer)
Mo 16 - 18 Uhr, Arnimallee 3, SR 130

S 19136 Oberseminar Analysis, Geometrie und Physik (Huisken)
Inhalt:
Im Zusammenarbeit mit Prof. Gerhard Huisken (Albert-Einstein-Institut, Potsdam und FU) finden Vorträge über aktuelle Themen aus der Analysis, Geometrie und Physik statt.
Termine:
Di 17:00 - 19:00 Uhr, Arnimallee 6, SR 031

Lectures

V-19020 Partielle Differentialgleichungen I (Schnürer)
Inhalt:
Harmonische Funktionen, Maximumprinzipien, Sobelevräume, L2-Theorie.
Termine:
Vorlesung:
Di 10:00 - 12:00 Uhr, Arnimallee 6, SR 007/008
Di 12:00 - 14:00 Uhr, Arnimallee 6, SR 031
Sprechstunde Dr. O. Schnürer: nach der Vorlesung
Literatur:
Literatur wird in der Vorlesung angegeben
Übungsblätter:
Blatt 1, Abgabe am 05.05.2009
Blatt 5, Abgabe am 19.05.2009

V-19057 Differential Geometry (Smith)
Inhalt:
Part I: Geometry of space forms (Geodesics, Jacobi fields, spaces of constant curvature)
Part II: Cartan's differential forms (differential forms, applications)
Part III: Geometric variational problems (Euler's elastic curves, minimal surfaces, first and second variation of area, Schwarz's eigenvalue problem)
Termine:
Vorlesung:
Mo/Fr 10 - 12 Uhr - Arnimallee 6, SR 007/008
Übung:
Mi 12-14 Uhr - Arnimallee 3, SR 130
Sprechstunde: nach der Vorlesung
Literatur:
Cartan, H.: Differential forms Chavel, I.: Riemannian geometry do Carmo, M.: Riemannian geometry Kuehnel, W.: Differentialgeometrie

V-19059 Kinetic equations (Rendall)
Inhalt
:
Kinetic theory is a way of describing the time evolution of a system consisting of a large number of elementary objects which may be called particles. The mathematical study of such systems leads to a class of partial differential equations called kinetic equations. Equations of this type have many applications in physics and other sciences. The 'particles' could for instance be electrons, stars, gas molecules or bacteria. This course presents general theory of kinetic equations together with a discussion of a variety of their applications.
Termine:
Vorlesung: Di 14:00 - 16:00 Uhr, Arnimallee 3, SR 005
Sprechstunde: nach der Vorlesung
Literatur:
Glassey, R. T. The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia, 1996. Vorlesungsskript (in Vorbereitung).

Archiv

Sommersemester 2004
Wintersemester 2004-2005
Sommersemester 2005
Wintersemester 2005-2006

Sommersemester 2006
Wintersemester 2006/2007
Sommersemester 2007
Wintersemester 2007/2008
Sommersemester 2008
Wintersemester 2008/2009