Fachbereich Mathematik und Informatik Freie Universität Berlin

Einführung in die Differentialgeometrie WS 2018/2019
Klaus Ecker

Sheet 1

Problem 1. Let $S^{n}=\left\{x \in \mathbf{R}^{n+1},|x|^{2}=1\right\}$. Let $p \in S^{n}$ and $v \in \mathbf{R}^{n+1}$ satisfy the relation $p \cdot v=0$ and assume $v \neq 0$. Find an explicit smooth curve $\alpha: I \rightarrow S^{n}$ which satisfies $\alpha(0)=p$ and $\dot{\alpha}(0)=v$.

3 points

Problem 2. Let C be a curve in the upper half-plane of \mathbf{R}^{2}, i.e. $C=f^{-1}(0)$ for a smooth function $f: U \rightarrow \mathbf{R}$ with $U=\{(t, r), r>0, t \in \mathbf{R}\}$ and $\nabla f(t, r) \neq 0$ for all $(t, r) \in C$. Let $V \subset \mathbf{R}^{n+1}$ be the open set given by $V=\left\{x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbf{R}^{n+1}, \sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}>\right.$ $\left.0, x_{n+1} \in \mathbf{R}\right\}$ and $g: V \rightarrow \mathbf{R}$ defined by $g\left(x_{1}, \ldots, x_{n+1}\right)=f\left(x_{n+1}, \sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}\right)$. Let $S=g^{-1}(0)$. (For $n=2, S$ is the set which one obtains by rotating the curve C about the x_{3} - axis in \mathbf{R}^{3}.).
Show: S is an n-dimensional (level set) surface in \mathbf{R}^{n+1}.

3 points

Problem 3. Let now f from problem 2 have the form $f(t, r)=u(t)-r$ for a smooth function $u: \mathbf{R} \rightarrow \mathbf{R}$ with $u(t)>0$ for $t \in \mathbf{R}$.
(a) In the case $n=2$ determine all tangent vectors to S at $p=(u(t) \cos \theta, u(t) \sin \theta, t)$ for $t, \theta \in \mathbf{R}$.
(b) For general n show that at an arbitrary point $p=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in S$ one has $\nabla g(p)=\left(q, u^{\prime}\left(x_{n+1}\right)\right)$, where $q \in S^{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}, x_{1}^{2}+\ldots+x_{n}^{2}=1\right\}\left(u^{\prime}\right.$ denotes the derivative function of u.). Hence show that $n-1$ tangent vectors are of the form $v=\left(v_{1}, \ldots, v_{n}, 0\right)$ where $\left(v_{1}, \ldots, v_{n}\right) \in \mathbf{R}^{n}$ is a tangent vector to S^{n-1} in q. Determine a further vector in $T_{p} S$ which is orthogonal to all those tangent vectors. This then gives a basis for $T_{p} S$.

4 points

To be submitted on Tuesday, 6. November 2018 at 10 a.m. in the lecture

