Fachbereich Mathematik und Informatik Freie Universität Berlin

Einführung in die Differentialgeometrie WS 2018/2019

Klaus Ecker

Sheet 2

Problem 1. Let $F : \mathbf{R}^2 \to \mathbf{R}^3$ be defined by $F(t, \theta) = (t \cos \theta, t \sin \theta, \theta)$. Show: $S = F(\mathbf{R}^2)$ is a parametrized 2- surface in \mathbf{R}^3 . S is called the *helocoid*. Compute in particular the metric for S.

3 points

Problem 2. Let $S^n = \{x \in \mathbf{R}^{n+1}, |x|^2 = 1\}$ and $e_{n+1} = (0, \dots, 0, 1)$.

(a) Show: $S^n \setminus \{e_{n+1}\}$ is a parametrized n - surface with parametrization $F : \mathbb{R}^n \to \mathbb{R}^{n+1}$ given by

$$F(u) = \frac{1}{|u|^2 + 1} (2u, |u|^2 - 1), \ u \in \mathbf{R}^n.$$

Compute in particular the metric $(g_{ij}(u))$ für $u \in \mathbf{R}^n$.

(b) Determine the stereographic projection $F^{-1}: S^n \setminus \{e_{n+1}\} \to \mathbf{R}^n$ for the map F from part (a).

4 points

Problem 3. Let b_1, \ldots, b_n be linearly independent vectors in \mathbb{R}^{n+1} . Let M be the $n \times (n+1)$ - matrix with rows given by b_1, \ldots, b_n . For $1 \le i \le n+1$ let M^i be the $n \times n$ - matrix obtained by deleting the *i*-th column of M and define $X_i = (-1)^{n+1+i} \det M^i$. The vector $X = (X_1, \ldots, X_{n+1})$ is often denoted by $b_1 \times \ldots \times b_n$. (a) Show: $X \ne 0$. (b) Show: $X \cdot b_j = 0$ for $1 \le j \le n$.

(c) Show: The $(n + 1) \times (n + 1)$ - matrix with rows b_1, \ldots, b_n and X (in that order) has positive determinant.

3 points

To be submitted on Tuesday 13. November 2018 at 10 a.m. in the lecture