Fachbereich Mathematik und Informatik Freie Universität Berlin

Einführung in die Differentialgeometrie WS 2018/2019

Klaus Ecker

Sheet 3

Problem 1. Let $\alpha: \mathbf{R} \rightarrow \mathbf{R}^{2}$ be defined by $\alpha(t)=(t, u(t))$ for a smooth function $u: \mathbf{R} \rightarrow \mathbf{R}$.
(a) Show: $C=\alpha(\mathbf{R})$ is a parametrized curve.
(b) Compute the curvature of C at the point $\alpha(t)$.

3 points

Problem 2. Let $F(t, \theta)=(t \cos \theta, t \sin \theta, \theta)$ for $(t, \theta) \in \mathbf{R}^{2}$ be the parametrization of the helicoid $S=F\left(\mathbf{R}^{2}\right)$ from problem 1, sheet 2.
(a) Determine the matix of the Weingarten map of F at the point $F(t, \theta)$ with respect to the basis vectors $\frac{\partial F}{\partial t}(t, \theta)$ and $\frac{\partial F}{\partial \theta}(t, \theta)$.
(b) Compute the Gauß curvature, the mean curvature as well as the principal curvatures of S at this point.

3 points
Problem 3. Let $\alpha: I \rightarrow \mathbf{R}^{2}$ be given by $\alpha(t)=(x(t), y(t)), t \in I$ with $y(t)>0$ and $x^{\prime 2}(t)+y^{\prime 2}(t)>0$ for all $t \in I$. Let $F: I \times \mathbf{R} \rightarrow \mathbf{R}^{3}$ be the parametrization of the surface which one obtains by rotation of this curve about the x_{1} - axis, i.e. $F(t, \theta)=$ $(x(t), y(t) \cos \theta, y(t) \sin \theta)$ for $t \in I$ and $\theta \in \mathbf{R}$.
(a) Show: The Gauß curvature at the point $F(t, \theta)$ is given by

$$
K(t, \theta)=\frac{x^{\prime}\left(x^{\prime \prime} y^{\prime}-x^{\prime} y^{\prime \prime}\right)}{y\left(x^{\prime 2}+y^{\prime 2}\right)^{2}}(t)
$$

(b) Show: If $x^{\prime 2}(t)+y^{\prime 2}(t)=1$ for all $t \in I$ then

$$
K(t, \theta)=-\frac{y^{\prime \prime}}{y}(t) .
$$

(c) Let

$$
x(t)=\int_{0}^{t} \sqrt{1-e^{-2 \tau}} d \tau, \quad y(t)=e^{-t}
$$

für $t>0$. Show: $K(t, \theta)=-1$ for all $(t, \theta), t>0$. This surface is called the pseudosphere.
4 points

To be submitted on Tuesday 20. November 2018 at 10 a.m. in the lecture

