Fachbereich Mathematik und Informatik Freie Universität Berlin

Einführung in die Differentialgeometrie WS 2018/2019
Klaus Ecker

Sheet 4

Please use the formula from lectures

$$
H(x)=-\operatorname{div} N(x)=\operatorname{div}\left(\frac{\nabla f}{|\nabla f|}\right)(x)
$$

for the mean curvature of a (level) n - surface $S=f^{-1}(c)$ with smooth $f: \Omega \subset \mathbf{R}^{n+1} \rightarrow \mathbf{R}$. We chose $N=-\frac{\nabla f}{|\nabla f|}$ as our unit normal field at the point $x \in S$. Here the divergence of a vector field $X: \Omega \subset \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1}$ is defined by

$$
\operatorname{div} X=\sum_{k=1}^{n+1} \frac{\partial X_{k}}{\partial x_{k}}
$$

Problem 1. Show that the mean curvature of the catenoid $S=\left\{x \in \mathbf{R}^{3}, \cosh x_{3}=\right.$ $\left.\sqrt{x_{1}^{2}+x_{2}^{2}}\right\}$ vanishes everywhere.

3 points

Problem 2. Let $S=g^{-1}(0)$ be the n - surface of revolution of problem 2, sheet 1 . Consider in particular the special case $f(t, r)=u(t)-r$ in problem 3, sheet 1 .
(a) Show: The mean curvature of S w.r.t. $N=-\frac{\nabla g}{|\nabla g|}$ at $x \in S$ is given by the formula

$$
H(x)=\frac{u^{\prime \prime}\left(x_{n+1}\right)}{\left(1+u^{\prime}\left(x_{n+1}\right)^{2}\right)^{3 / 2}}-\frac{n-1}{r \sqrt{1+u^{\prime}\left(x_{n+1}\right)^{2}}}
$$

where $r=\sqrt{x_{1}^{2}+\ldots x_{n}^{2}}=u\left(x_{n+1}\right)$.
(b) Use this formula to check your result of problem 1.

3 points

Problem 3. Let $S=\left\{x \in \mathbf{R}^{n+1}, f(x)=c\right\}$ be an n - (level) surface. For $\lambda>0$, define the function $f_{\lambda}: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ by $f_{\lambda}(y)=f\left(\frac{y}{\lambda}\right)$. Let $S_{\lambda}=\left\{y \in \mathbf{R}^{n+1}, f_{\lambda}(y)=c\right\}$.
Show:
(a) $S_{\lambda}=\lambda S \equiv\{\lambda x, x \in S\}$.
(b) S_{λ} is a (level) n-surface.
(c) The mean curvature H_{λ} of S_{λ} satisfies

$$
H_{\lambda}(\lambda x)=\frac{1}{\lambda} H(x)
$$

for all $x \in S$ where $H(x)$ is the mean curvature of S at x.

4 points

To be returned on Tuesday 27. November 2018 at 10 a.m. (sharp) to Klaus Ecker's tutorial box

