Fachbereich Mathematik und Informatik Freie Universität Berlin Einführung in die Differentialgeometrie WS 2018/2019 Klaus Ecker

Sheet 7

Problem 1. Write down an expression for the components R_{ijkl} of the curvature tensor, which consists only of the components g_{ij} of the metric, of the Christoffelsymbols Γ_{ij}^k as well as the partial derivatives of the Christoffelsymbols.

2 points

Problem 2. Let M be an n - dimensional differentiable manifold with atlas $\{(x_{\alpha}, U_{\alpha})\}$. Let $V \subset M$. We call V an *open subset* of M if for every α the sets $x_{\alpha}(V \cap U_{\alpha})$ are open in \mathbb{R}^{n} . (This is a definition!)

(a) Show: The open subset of M defined in this way form a topology of M.

(b) Show: All chart mappings x_{α} are continuous with respect to this topology. (Note that this was not an assumption in our definition of a differentiable manifold.)

4 points

Problem 3. Let S^n be the unit sphere in \mathbb{R}^{n+1} . Let $N = e_{n+1}$ and $S = -e_{n+1}$ be the north pole and south pole of S^n , respectively. Show that there is a differentiable atlas $\{(x_N, U_N), (x_S, U_S)\}$ for S^n given by $U_N = S^n \setminus \{N\}$ and $U_S = S^n \setminus \{S\}$ as well as the associated stereographic projections $x_N : U_N \to \mathbb{R}^n$ und $x_S : U_S \to \mathbb{R}^n$ defined by

$$x_N(p_1,\ldots,p_{n+1}) = \frac{(p_1,\ldots,p_n)}{1-p_{n+1}}$$

and

$$x_S(p_1,\ldots,p_{n+1}) = \frac{(p_1,\ldots,p_n)}{1+p_{n+1}}$$

4 points

To be returned on Monday 14. January 2019 at 12 noon (sharp) to Klaus Ecker's tutorial box