Fachbereich Mathematik und Informatik Freie Universität Berlin

Einführung in die Differentialgeometrie WS 2018/2019

Klaus Ecker

Sheet 8

Problem 1. A differentiable manifold M is called orientable if it admits a differentiable atlas $\left\{\left(x_{\alpha}, U_{\alpha}\right)\right\}$ such that for every $p \in U_{\alpha} \cap U_{\beta}$ we have

$$
\operatorname{det}\left(D\left(x_{\alpha} \circ x_{\beta}\right)\left(x_{\beta}(p)\right)\right)>0 .
$$

Such an atlas is called an orientation for M.
(a) Let $\left\{\left(x_{1}, U_{1}\right),\left(x_{2}, U_{2}\right)\right\}$ be a differentiable atlas for M such that $U_{1} \cap U_{2}$ is connected in M. Show that then M is orientable.
(b) Use problem 3, sheet 7, to find an explicit orientation for S^{n} (Hint: On sheet 7 you had to prove that $x_{S} \circ x_{N}^{-1}$ and $x_{N} \circ x_{S}^{-1}$ are differentiable in their respective domains. Here you may need to compute their derivatives explicitely.)

6 points
Problem 2. As defined in lectures, a derivation on a smooth manifold M is a map $A: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying (i) $A(a f+b g)=a A(f)+b A(g)$ for all $a, b \in \mathbf{R}, f, g \in$ $C^{\infty}(M)$ and (ii) $A(f g)=f A(g)+A(f) g$ for all $f, g \in C^{\infty}(M)$. For a smooth vector field X on a differentiable manifold M we define (as in lectures) the associated derivation \bar{X} by $\bar{X}(f)(p)=X(p)(f)$ for all $f \in C^{\infty}(M)$ and all $p \in M$. Let X, Y be smooth vector fields on a differentiable manifold M and let \bar{X}, \bar{Y} be their associated derivations.
(a) Show: The expression $X Y$ defined in the canonical way by composition of the associated derivations is in general not a vector field. (Hint: Show that $\bar{X} \bar{Y}$ generally does not satisfy the product rule (ii) above.)
(b) Show: The Lie bracket defined by $[X, Y]=X Y-Y X$ (again using \bar{X} and \bar{Y}) is a vector field, that is gives rise to a derivation on M.

Problem 3. Derive the following properties of the Lie bracket on a smooth manifold M :
(a)

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

for all smooth vector fields X, Y, Z. This is the so-called Jacobi-identity.
(b) Derive a formula for $[f X, g Y]$ for vector fields X, Y and $f, g \in C^{\infty}(M)$ and use this to show that

$$
[f X, Y] \neq f[X, Y]
$$

in general.
2 points

To be returned on Monday 28. January 2019 at 12 noon (sharp) to Klaus Ecker's tutorial box

