Fachbereich Mathematik und Informatik Freie Universität Berlin

Einführung in die Differentialgeometrie WS 2018/2019

Klaus Ecker

Sheet 9

Problem 1. Let M be an n- dimensional differentiable manifold with a Riemannian metric g. A map $\phi : M \to M$ is called an *isometry* if it is a diffeomorphism and

$$g(\phi(p))(d\phi(p)(v_p), d\phi(p)(w_p)) = g(p)(v_p, w_p)$$

holds for all $v_p, w_p \in T_p M$.

Let \mathbf{H}^n be hyperbolic space defined as the manifold $U = \{p \in \mathbf{R}^n, p_n > 0\}$ with metric given by $g = (g_{ij})$ with $g_{ij}(p) = \frac{1}{(p_n)^2} \delta_{ij}, 1 \leq i, j \leq n$. Show that the following maps $\phi : \mathbf{H}^n \to \mathbf{H}^n$ are isometries.

(a) $\phi(p) = (\psi(p_1, \dots, p_{n-1}), p_n), p \in U$, for an arbitrary isometry ψ of \mathbb{R}^{n-1} .

- (b) $\phi(p) = \lambda p, p \in U, \lambda > 0$ fixed.
- (c) $\phi(p) = (p_1, \dots, -p_i, \dots, p_n)$ für $1 \le i \le n-1$
- (d) $\phi(p) = \frac{p}{|p|^2}, \ |p| = \sqrt{\sum_{i=1}^{n} (p_i)^2}.$

Which of these maps are isometries of \mathbb{R}^n with the standard metric and which are not. Justify your answers.

6 points

Problem 2. Let D denote the standard connection on \mathbb{R}^3 . Show that

$$\nabla_X Y := D_X Y + \frac{1}{2}X \times Y$$

defines an affine connection on \mathbb{R}^3 . Here \times denotes the usual cross-product of vectors in \mathbb{R}^3 .

1 point

Problem 3. Let $(M, \langle \cdot, \cdot \rangle)$ be a Riemannian manifold. Define

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left(X \langle Y, Z \rangle + Y \langle X, Z \rangle - Z \langle X, Y \rangle - \langle X, [Y, Z] \rangle - \langle Y, [X, Z] \rangle + \langle Z, [X, Y] \rangle \right)$$

for smooth vector fields X, Y, Z auf M. Show that ∇ defines a Riemannian connection i.e. ∇ is an affine connection with the additional properties $X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$ and $[X, Y] = \nabla_X Y - \nabla_Y X$ for smooth vector fields X, Y, Z.

3 points

To be returned on Monday 4. February 2019 at 12 noon (sharp) to Klaus Ecker's tutorial box