Tutorial sheet 2

  1. Let ρ:Rn[0,[\rho:\mathbb{R}^{n}\rightarrow [0,\infty[ be a continuous function such that supp ρB(0,1)\supp \rho\subset \overline{B(0,1)}, ρ(0)>0\rho(0)>0, ρ(x)=ρ(x)\rho(x)=\rho(-x) for all xRnx\in\mathbb{R}^{n}, and Rnρ=1\int_{\mathbb{R}^{n}}\rho=1. For fixed ε>0\eps>0, define ρε:Rn[0,[\rho_{\eps}:\mathbb{R}^{n}\rightarrow [0,\infty[ such that ρε(x):=εnρ(xε)\rho_{\eps}(x):=\eps^{-n}\rho(\frac{x}{\eps}).

    a) Show that Rnρε=1\int_{\mathbb{R}^{n}}\rho_{\eps}=1 and the following holds:

    limε0ρε(x)={,x=00,otherwise\lim_{\eps\searrow 0} \rho_{\eps}(x) = \begin{cases}\infty,&x=0\\0,&\textup{otherwise}\end{cases}

    b) Suppose that n=1n=1, and set Rε(x):=xρεR_{\eps}(x):=\int_{-\infty}^{x}\rho_{\eps} for xRx\in\mathbb{R}. Show that the following holds:

    limε0Rε(x)={0,x<012,x=01,x>0\lim_{\eps\searrow 0}R_{\eps}(x)= \begin{cases}0,&x<0\\ \frac{1}{2},&x=0\\1,&x>0 \end{cases}
  2. Suppose that uW1,p(]a,b[)u\in W^{1,p}(]a,b[) with p>1p>1. Show that there exists a function vC0+α([a,b])v\in C^{0+\alpha}([a,b]) with α=11p\alpha=1-\frac{1}{p} such that uvu\equiv v a.e. and the inequality

    [v]αvp[v]_{\alpha}\leq ||v'||_{p}

    holds.

  3. Let p[1,n[p\in\left[1,n\right[, and suppose that there exist a C>0C>0 and q>0q>0 such that the inequality

    uqCDup||u||_{q}\leq C \cdot ||\D u||_{p}

    holds for all uC01(Rn)u\in C_{0}^{1}(\mathbb{R}^{n}). By considering the rescaled function uλ:RnRu_{\lambda}:\mathbb{R}^{n}\rightarrow\mathbb{R} defined by uλ(x):=u(λx)u_{\lambda}(x):=u(\lambda x) for fixed λ>0\lambda>0, show that

    q=npnp.q=\frac{np}{n-p}.
  4. a) Let AA be an n×nn\times n matrix. Show that tr AnA|\textup{tr}\ A|\leq \sqrt{n}|A|, where tr A=i=1naii\textup{tr}\ A=\sum_{i=1}^{n}a_{ii} and A=i,j=1naij2|A|=\sqrt{\sum_{i,j=1}^{n}|a_{ij}|^{2}}.

    b) Suppose that ΩRn\Omega\subset\mathbb{R}^{n} is open and nonempty, and let uC02(Ω)u\in C_{0}^{2}(\Omega). Show that for all ε>0\eps>0, the interpolation inequality

    ΩDu2εΩD2u2+n4εΩu2\int_{\Omega}|\D u|^{2} \leq \eps\int_{\Omega}|\D^{2}u|^{2} + \frac{n}{4\eps}\int_{\Omega}|u|^{2}

    holds. Deduce that this inequality holds for uH02,2(Ω)u\in H_{0}^{2,2}(\Omega).


To be submitted by 10 a.m. on Friday November 22.