Tutorial sheet 6

Throughout this sheet, assume that ΩRn\Omega\subset\mathbb{R}^{n} is a bounded domain of class CC^{\infty}. For a function uL1(Ω)u\in L^{1}(\Omega), u:=1Vol(Ω)Ωu\overline{u}:=\frac{1}{\textup{Vol}(\Omega)}\int_{\Omega}u denotes the average value of uu.

  1. Fix r>0r>0, x0Rnx_{0}\in\mathbb{R}^{n} and λ>0\lambda>0. For each uC2(Ω)C0(Ω)u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega}), define the rescaled function

    ur(x0):Ωr(x0)Rxu(x0+rx),\begin{aligned} u_{r}^{(x_{0})}:\Omega_{r}^{(x_{0})}&\rightarrow\mathbb{R}\\ x&\mapsto u(x_{0}+rx),\end{aligned}

    where Ωr(x0)=r1(Ωx0)\Omega_{r}^{(x_{0})}=r^{-1}\cdot (\Omega - x_{0}). Show that the pair (u,λ)(u,\lambda) solves the eigenvalue problem

    Δu=λu on ΩuΩ=0\begin{aligned}-\Delta u &=\lambda u\ \textup{on }\Omega\\ \left.u\right|_{\partial\Omega}&=0 \end{aligned}

    if and only if the pair (ur,r2λ)(u_{r},r^{2}\lambda) solves the eigenvalue problem

    Δur=r2λu on Ωr(x0)urΩr(x0)=0.\begin{aligned}-\Delta u_{r} &=r^{2}\lambda u\ \textup{on }\Omega_{r}^{(x_{0})}\\ \left.u_{r}\right|_{\partial\Omega_{r}^{(x_{0})}}&=0. \end{aligned}

    (4 marks)

  2. Let u0C(Ω)u_{0}\in C^{\infty}(\overline\Omega) and suppose uC(Ω[0,[)u\in C^{\infty}(\overline{\Omega}\cap \left[0,\infty\right[) solves the initial-boundary value problem

    tuΔu=0 on Ω×]0,[u(,0)=u0uν=0 on Ω×[0,[,\begin{aligned}\partial_{t}u - \Delta u&=0\ \textup{on }\Omega\times\left]0,\infty\right[\\ u(\cdot,0)&=u_{0}\\ \frac{\partial u }{\partial \nu}&=0\ \textup{on }\partial\Omega\times\left[0,\infty\right[, \end{aligned}

    ν\nu denoting the outer unit normal of Ω\partial\Omega. Let u(t)\overline{u}(t) denote the average value of u(,t)u(\cdot,t) for each t0t\geq 0.

    a) Show that dudt0\frac{d\overline{u}}{d t}\equiv 0, i.e. the average value of u(,t)u(\cdot,t) is constant in tt.

    b) Show using the Poincaré inequality Ω(vv)2c0ΩDv2\int_{\Omega}(v-\overline{v})^{2}\leq c_{0}\cdot \int_{\Omega}|\D v|^{2} for vW1,2(Ω)v\in W^{1,2}(\Omega) that the inequality

    u(,t)u02ec01tu0u02||u(\cdot,t)-\overline{u}_{0}||_{2} \leq e^{-c_{0}^{-1}t}||u_{0}-\overline{u}_{0}||_{2}

    holds. Deduce that u(,t)tu0u(\cdot,t)\xrightarrow{t\rightarrow\infty} \overline{u}_{0} in L2(Ω)L^{2}(\Omega).

    c) Now suppose gC(Ω)g\in C^{\infty}(\overline{\Omega}) and uu solves the initial-boundary value problem

    tuΔu=0 on Ω×]0,[u(,0)=u0uν(x,t)=g(x) for (x,t)Ω×[0,[\begin{aligned}\partial_{t}u - \Delta u&=0\ \textup{on }\Omega\times\left]0,\infty\right[\\ u(\cdot,0)&=u_{0}\\ \frac{\partial u }{\partial \nu}(x,t)&=g(x)\ \textup{for }(x,t)\in\partial\Omega\times\left[0,\infty\right[ \end{aligned}

    and let wC(Ω)w\in C^{\infty}(\overline{\Omega}) be a solution to the following Neumann boundary-value problem:

    Δw=0 on ΩwνΩ=gΩ\begin{aligned}-\Delta w&=0\ \textup{on }\Omega\\ \left.\frac{\partial w}{\partial\nu}\right|_{\partial\Omega}&=\left.g\right|_{\partial\Omega}\end{aligned}

    Show that u(,t)tww+u0u(\cdot,t)\xrightarrow{t\rightarrow\infty} w - \overline{w} + \overline{u}_{0} in L2(Ω)L^{2}(\Omega).

    (8 marks)

  3. Let Lu:=i,j=1ni(aijju)Lu:=-\sum_{i,j=1}^{n}\partial_{i}(a_{ij}\partial_{j}u) be an elliptic operator with aijC(Ω)a_{ij}\in C^{\infty}(\overline{\Omega}) and let u0,gC(Ω)u_{0},g\in C^{\infty}(\overline{\Omega}). Suppose that uC(Ω×[0,[)u\in C^{\infty}(\overline{\Omega}\times\left[0,\infty\right[) solves the initial-boundary value problem

    tu+Lu=0 on Ω×]0,[u(,0)=u0u(x,t)=g(x) for (x,t)Ω×[0,[.\begin{aligned}\partial_{t}u +L u&=0\ \textup{on }\Omega\times\left]0,\infty\right[\\ u(\cdot,0)&=u_{0}\\ u(x,t)&=g(x)\ \textup{for }(x,t)\in\partial\Omega\times\left[0,\infty\right[. \end{aligned}

    Show that if wC(Ω)w\in C^{\infty}(\overline\Omega) solves the boundary-value problem

    Lw=0 on ΩwΩ=gΩ,\begin{aligned}Lw&=0\ \textup{on }\Omega\\\left.w\right|_{\partial\Omega}&=\left.g\right|_{\partial\Omega},\end{aligned}

    then for all t0t\geq 0,

    u(,t)w2eλ1tu0w2,||u(\cdot,t)-w||_{2}\leq e^{-\lambda_{1}t}||u_{0}-w||_{2},

    where λ1>0\lambda_{1}>0 denotes the principal eigenvalue of LL. Deduce that u(,t)twu(\cdot,t)\xrightarrow{t\rightarrow\infty} w in L2(Ω)L^{2}(\Omega).

    (8 marks)


To be submitted by 10 a.m. on Friday January 31.