Polygons with total curvature smaller than 6π can bound only finitely many immersed minimal surfaces

Ruben Jakob*

18th of December 2007

We shall sketch a partial proof of the assertion that a simple closed polygon $\Gamma \subset \mathbb{R}^3$ can bound only finitely many immersed minimal surfaces of disc-type if it meets two requirements: firstly it has to span only minimal surfaces without boundary branch points and secondly its total curvature, i.e. the sum of the exterior angles $\{\delta_l\}$ at its N+3 vertices, has to be smaller than 6π .

Here a disc-type minimal surface X is called *immersed* if there holds $\inf_B | DX | > 0$, where we denote by B the open unit disc $\{w = (u, v) \in \mathbb{R}^2 | | w | < 1\}$.

The considered statement should be compared to the following two achievements:

1) Nitsche proved in 1978 that a Jordan curve Γ of class $C^{4,\alpha}$ can bound only finitely many minimal surfaces, if it has the property to span only immersed minimal surfaces and if its total curvature does not exceed the value 6π .

2) After that Sauvigny proved in 1989 that a Jordan curve Γ of class $C^{4,\alpha}$ which is contained in the boundary of some convex compact set and in the open unit ball $B_1^3(0)$ can bound only finitely many immersed, small H-surfaces, if Γ meets the additional property

$$\frac{H^2(1+H)}{2\pi(1-H)}\mathcal{L}(\Gamma)^2 + total \ curvature(\Gamma) \le 6\pi.$$

^{*}Institute: Hausdorff research institute for mathematics, Poppelsdorfer Allee 82, 53113 Bonn, Deutschland, E-mail: rubenjakob@freenet.de