Geometric Analysis at the Freie Universit? Berlin

Lectures and Seminars for Graduate and Undergraduate Students
Winter Semester 2009/2010


The International Max-Planck Research School for Geometric Analysis, Gravitation and String Theory is a joint project of the Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Freie Universität Berlin (Institute for Mathematics) and Universität Potsdam.
The IMPRS aims to promote research in mathematical physics in an area related in the widest sense to Einstein's theory of general relativity, ranging from pure mathematics (differential geometry and the theory of partial differential equations) to the physics of black holes, gravitational waves and cosmological applications of Einstein's theory and all the way to the most recent efforts to reconcile Einstein's theory with quantum mechanics in the framework of superstring theory and M theory.
Our following seminars are recommended for post-graduates of the IMPRS:
- - Forschungsseminar Geometrische Analysis.
- - Oberseminar Analysis, Geometrie und Physik.


S-19142 Forschungsseminar Geometrische Analysis (Ecker)
Do 16 - 18 Uhr, Königin Luise-Straße 24-26, SR 016

S 19151 Oberseminar Analysis, Geometrie und Physik (Ecker)
Im Zusammenarbeit mit Prof. Gerhard Huisken (Albert-Einstein-Institut, Potsdam und FU) finden Vorträge über aktuelle Themen aus der Analysis, Geometrie und Physik statt.
Di 17:00 - 19:00 Uhr, Arnimallee 6, SR 031


V-19027 Differentialgeometrie III (Ecker)
Fortgeschrittene Themen aus der Differentialgeometrie, wie z.B.: Geometrische Evolutionsgleichungen, Langzeitverhalten von Lösungen geometrischer Evolutionsgleichungen, Flächen vorgeschriebener Krümmung und Blätterung, Existenz geschlossener Geodätischer, Monotonieformel.
Di 10:00 - 12:00 Uhr, Arnimallee 3, HH, SR 130
Do 10:00 - 12:00 Uhr, Arnimallee 3, HH, SR 130
Sprechstunde nach der Vorlesung
Literatur wird in der Vorlesung angegeben

V-19021 Partielle Differentialgleichungen II (Schnürer)
Schaudertheorie, De Giorgi-Nash-Moser, Krylov-Safonov
Vorlesung: Mo/Mi 12 - 14 Uhr - Arnimallee 3, HH, SR 130
Sprechstunde: nach der Vorlesung
Gilbarg-Trudinger: Elliptic Partial Differential Equations of Second Order, Skript

V-19053 Introduction to Ricci-Flow (Huisken)
The course studies the Ricci-Flow of Riemannian metrics and establishes necessary techniques on the way to some exemplary results. It is the aim of the course to establish at least some of the buiding blocks necessary for the proof of the Poincare conjecture.
Vorlesung: Di 14:00 - 16:00 Uhr, Arnimallee 3, HH, SR 130
Sprechstunde: nach der Vorlesung
1) Peter Topping: Lectures on the Ricciflow, Cambridge Univ. Press.
2) Ben Chow + Dan Knopf: Ricciflow - an introduction, AMS book.
3) Chow, Lu, Ni: Hamiltons Ricciflow, AMS book.
4) J. Morgan and G. Tian: Ricciflow and the Poincare conjecture, Clay Mathematics Monographs.


Sommersemester 2004
Wintersemester 2004-2005
Sommersemester 2005
Wintersemester 2005-2006

Sommersemester 2006
Wintersemester 2006/2007
Sommersemester 2007
Wintersemester 2007/2008
Sommersemester 2008
Wintersemester 2008/2009
Sommersemester 2009